99 landsat 9
Uncomment the following line to install geemap if needed.
Landsat 9 was successfully launched on Sept. 27, 2021. USGS has been providing Landsat data to the public since Feb. 10, 2022. Landsat 9 data can be downloaded from EarthExplorer. The Earth Engine team has been ingesting Landsat 9 into the Public Data Catalog. As of Feb. 14, 2022, although Landsat 9 data have not been publicly listed on the Earth Engine Datasets page, you can access the data through ee.ImageCollection('LANDSAT/LC09/C02/T1_L2')
.
# !pip install geemap
Import libraries.
import ee
import geemap
Create an interactive map.
Map = geemap.Map()
Find out how many Landsat imgaes are available.
collection = ee.ImageCollection("LANDSAT/LC09/C02/T1_L2")
print(collection.size().getInfo())
Create a median composite.
median = collection.median()
Apply scaling factors. See https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1_L2#bands
def apply_scale_factors(image):
opticalBands = image.select("SR_B.").multiply(0.0000275).add(-0.2)
thermalBands = image.select("ST_B.*").multiply(0.00341802).add(149.0)
return image.addBands(opticalBands, None, True).addBands(thermalBands, None, True)
dataset = apply_scale_factors(median)
Specify visualization parameters.
vis_natural = {
"bands": ["SR_B4", "SR_B3", "SR_B2"],
"min": 0.0,
"max": 0.3,
}
vis_nir = {
"bands": ["SR_B5", "SR_B4", "SR_B3"],
"min": 0.0,
"max": 0.3,
}
Add data layers to the map.
Map.addLayer(dataset, vis_natural, "True color (432)")
Map.addLayer(dataset, vis_nir, "Color infrared (543)")
Map
Create linked maps for visualizing images with different band combinations. For more information on common band combinations of Landsat 8/9, see https://gisgeography.com/landsat-8-bands-combinations/
Specify visualization parameters.
vis_params = [
{"bands": ["SR_B4", "SR_B3", "SR_B2"], "min": 0, "max": 0.3},
{"bands": ["SR_B5", "SR_B4", "SR_B3"], "min": 0, "max": 0.3},
{"bands": ["SR_B7", "SR_B6", "SR_B4"], "min": 0, "max": 0.3},
{"bands": ["SR_B6", "SR_B5", "SR_B2"], "min": 0, "max": 0.3},
]
Specify labels for each layers.
labels = [
"Natural Color (4, 3, 2)",
"Color Infrared (5, 4, 3)",
"Short-Wave Infrared (7, 6 4)",
"Agriculture (6, 5, 2)",
]
Create linked maps.
geemap.linked_maps(
rows=2,
cols=2,
height="400px",
center=[40, -100],
zoom=4,
ee_objects=[dataset],
vis_params=vis_params,
labels=labels,
label_position="topright",
)
Create a split-panel map for comparing Landsat 8 and 9 images.
Retrieve two sample images.
landsat8 = ee.Image("LANDSAT/LC08/C02/T1_L2/LC08_015043_20130402")
landsat9 = ee.Image("LANDSAT/LC09/C02/T1_L2/LC09_015043_20211231")
Apply scaling factors.
landsat8 = apply_scale_factors(landsat8)
landsat9 = apply_scale_factors(landsat9)
Generate Earth Engine layers.
left_layer = geemap.ee_tile_layer(landsat8, vis_natural, "Landsat 8")
right_layer = geemap.ee_tile_layer(landsat9, vis_natural, "Landsat 9")
Create a split-panel map.
Map = geemap.Map()
Map.split_map(left_layer, right_layer)
Map