Skip to content

timelapse module

Module for creating timelapse from Earth Engine data.

add_image_to_gif(in_gif, out_gif, in_image, xy=None, image_size=(80, 80), circle_mask=False)

Adds an image logo to a GIF image.

Parameters:

Name Type Description Default
in_gif str

Input file path to the GIF image.

required
out_gif str

Output file path to the GIF image.

required
in_image str

Input file path to the image.

required
xy tuple

Top left corner of the text. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

None
image_size tuple

Resize image. Defaults to (80, 80).

(80, 80)
circle_mask bool

Whether to apply a circle mask to the image. This only works with non-png images. Defaults to False.

False
Source code in geemap/timelapse.py
def add_image_to_gif(
    in_gif, out_gif, in_image, xy=None, image_size=(80, 80), circle_mask=False
):
    """Adds an image logo to a GIF image.

    Args:
        in_gif (str): Input file path to the GIF image.
        out_gif (str): Output file path to the GIF image.
        in_image (str): Input file path to the image.
        xy (tuple, optional): Top left corner of the text. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        image_size (tuple, optional): Resize image. Defaults to (80, 80).
        circle_mask (bool, optional): Whether to apply a circle mask to the image. This only works with non-png images. Defaults to False.
    """
    # import io
    import warnings

    from PIL import Image, ImageDraw, ImageSequence

    warnings.simplefilter("ignore")

    in_gif = os.path.abspath(in_gif)

    is_url = False
    if in_image.startswith("http"):
        is_url = True

    if not os.path.exists(in_gif):
        print("The input gif file does not exist.")
        return

    if (not is_url) and (not os.path.exists(in_image)):
        print("The provided logo file does not exist.")
        return

    out_dir = check_dir((os.path.dirname(out_gif)))
    if not os.path.exists(out_dir):
        os.makedirs(out_dir)

    try:
        gif = Image.open(in_gif)
    except Exception as e:
        print("An error occurred while opening the image.")
        print(e)
        return

    logo_raw_image = None
    try:
        if in_image.startswith("http"):
            logo_raw_image = open_image_from_url(in_image)
        else:
            in_image = os.path.abspath(in_image)
            logo_raw_image = Image.open(in_image)
    except Exception as e:
        print(e)

    logo_raw_size = logo_raw_image.size

    ratio = max(
        logo_raw_size[0] / image_size[0],
        logo_raw_size[1] / image_size[1],
    )
    image_resize = (int(logo_raw_size[0] / ratio), int(logo_raw_size[1] / ratio))
    image_size = min(logo_raw_size[0], image_size[0]), min(
        logo_raw_size[1], image_size[1]
    )

    logo_image = logo_raw_image.convert("RGBA")
    logo_image.thumbnail(image_size, Image.LANCZOS)

    gif_width, gif_height = gif.size
    mask_im = None

    if circle_mask:
        mask_im = Image.new("L", image_size, 0)
        draw = ImageDraw.Draw(mask_im)
        draw.ellipse((0, 0, image_size[0], image_size[1]), fill=255)

    if has_transparency(logo_raw_image):
        mask_im = logo_image.copy()

    if xy is None:
        # default logo location is 5% width and 5% height of the image.
        delta = 10
        xy = (gif_width - image_resize[0] - delta, gif_height - image_resize[1] - delta)
        # xy = (int(0.05 * gif_width), int(0.05 * gif_height))
    elif (xy is not None) and (not isinstance(xy, tuple)) and (len(xy) == 2):
        print("xy must be a tuple, e.g., (10, 10), ('10%', '10%')")
        return
    elif all(isinstance(item, int) for item in xy) and (len(xy) == 2):
        x, y = xy
        if (x > 0) and (x < gif_width) and (y > 0) and (y < gif_height):
            pass
        else:
            print(
                "xy is out of bounds. x must be within [0, {}], and y must be within [0, {}]".format(
                    gif_width, gif_height
                )
            )
            return
    elif all(isinstance(item, str) for item in xy) and (len(xy) == 2):
        x, y = xy
        if ("%" in x) and ("%" in y):
            try:
                x = int(float(x.replace("%", "")) / 100.0 * gif_width)
                y = int(float(y.replace("%", "")) / 100.0 * gif_height)
                xy = (x, y)
            except Exception:
                raise Exception(
                    "The specified xy is invalid. It must be formatted like this ('10%', '10%')"
                )

    else:
        raise Exception(
            "The specified xy is invalid. It must be formatted like this: (10, 10) or ('10%', '10%')"
        )

    try:
        frames = []
        for _, frame in enumerate(ImageSequence.Iterator(gif)):
            frame = frame.convert("RGBA")
            frame.paste(logo_image, xy, mask_im)

            b = io.BytesIO()
            frame.save(b, format="GIF")
            frame = Image.open(b)
            frames.append(frame)

        frames[0].save(out_gif, save_all=True, append_images=frames[1:])
    except Exception as e:
        print(e)

add_overlay(collection, overlay_data, color='black', width=1, opacity=1.0, region=None)

Adds an overlay to an image collection.

Parameters:

Name Type Description Default
collection ee.ImageCollection

The image collection to add the overlay to.

required
overlay_data str | ee.Geometry | ee.FeatureCollection

The overlay data to add to the image collection. It can be an HTTP URL to a GeoJSON file.

required
color str

The color of the overlay. Defaults to 'black'.

'black'
width int

The width of the overlay. Defaults to 1.

1
opacity float

The opacity of the overlay. Defaults to 1.0.

1.0
region ee.Geometry | ee.FeatureCollection

The region of interest to add the overlay to. Defaults to None.

None

Returns:

Type Description
ee.ImageCollection

An ImageCollection with the overlay added.

Source code in geemap/timelapse.py
def add_overlay(
    collection: ee.ImageCollection,
    overlay_data: Union[str, ee.Geometry, ee.FeatureCollection],
    color: str = "black",
    width: int = 1,
    opacity: float = 1.0,
    region: Union[ee.Geometry, ee.FeatureCollection] = None,
) -> ee.ImageCollection:
    """Adds an overlay to an image collection.

    Args:
        collection (ee.ImageCollection): The image collection to add the overlay to.
        overlay_data (str | ee.Geometry | ee.FeatureCollection): The overlay data to add to the image collection. It can be an HTTP URL to a GeoJSON file.
        color (str, optional): The color of the overlay. Defaults to 'black'.
        width (int, optional): The width of the overlay. Defaults to 1.
        opacity (float, optional): The opacity of the overlay. Defaults to 1.0.
        region (ee.Geometry | ee.FeatureCollection, optional): The region of interest to add the overlay to. Defaults to None.

    Returns:
        ee.ImageCollection: An ImageCollection with the overlay added.
    """

    # Some common administrative boundaries.
    public_assets = ["continents", "countries", "us_states", "china"]

    if not isinstance(collection, ee.ImageCollection):
        raise Exception("The collection must be an ee.ImageCollection.")

    if not isinstance(overlay_data, ee.FeatureCollection):
        if isinstance(overlay_data, str):
            try:
                if overlay_data.lower() in public_assets:
                    overlay_data = ee.FeatureCollection(
                        f"users/giswqs/public/{overlay_data.lower()}"
                    )
                elif overlay_data.startswith("http") and overlay_data.endswith(
                    ".geojson"
                ):
                    overlay_data = geojson_to_ee(overlay_data)
                else:
                    overlay_data = ee.FeatureCollection(overlay_data)

            except Exception as e:
                print(
                    "The overlay_data must be a valid ee.FeatureCollection, a valid ee.FeatureCollection asset id, or http url to a geojson file."
                )
                raise Exception(e)
        elif isinstance(overlay_data, ee.Feature):
            overlay_data = ee.FeatureCollection([overlay_data])
        elif isinstance(overlay_data, ee.Geometry):
            overlay_data = ee.FeatureCollection([ee.Feature(overlay_data)])
        else:
            raise Exception(
                "The overlay_data must be a valid ee.FeatureCollection or a valid ee.FeatureCollection asset id."
            )

    try:
        if region is not None:
            overlay_data = overlay_data.filterBounds(region)

        empty = ee.Image().byte()
        image = empty.paint(
            **{
                "featureCollection": overlay_data,
                "color": 1,
                "width": width,
            }
        ).visualize(**{"palette": check_color(color), "opacity": opacity})
        blend_col = collection.map(
            lambda img: img.blend(image).set(
                "system:time_start", img.get("system:time_start")
            )
        )
        return blend_col
    except Exception as e:
        print("Error in add_overlay:")
        raise Exception(e)

add_progress_bar_to_gif(in_gif, out_gif, progress_bar_color='blue', progress_bar_height=5, duration=100, loop=0)

Adds a progress bar to a GIF image.

Parameters:

Name Type Description Default
in_gif str

The file path to the input GIF image.

required
out_gif str

The file path to the output GIF image.

required
progress_bar_color str

Color for the progress bar. Defaults to 'white'.

'blue'
progress_bar_height int

Height of the progress bar. Defaults to 5.

5
duration int

controls how long each frame will be displayed for, in milliseconds. It is the inverse of the frame rate. Setting it to 100 milliseconds gives 10 frames per second. You can decrease the duration to give a smoother animation.. Defaults to 100.

100
loop int

controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.

0
Source code in geemap/timelapse.py
def add_progress_bar_to_gif(
    in_gif,
    out_gif,
    progress_bar_color="blue",
    progress_bar_height=5,
    duration=100,
    loop=0,
):
    """Adds a progress bar to a GIF image.

    Args:
        in_gif (str): The file path to the input GIF image.
        out_gif (str): The file path to the output GIF image.
        progress_bar_color (str, optional): Color for the progress bar. Defaults to 'white'.
        progress_bar_height (int, optional): Height of the progress bar. Defaults to 5.
        duration (int, optional): controls how long each frame will be displayed for, in milliseconds. It is the inverse of the frame rate. Setting it to 100 milliseconds gives 10 frames per second. You can decrease the duration to give a smoother animation.. Defaults to 100.
        loop (int, optional): controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.

    """
    import io
    import warnings

    from PIL import Image, ImageDraw, ImageSequence

    warnings.simplefilter("ignore")

    in_gif = os.path.abspath(in_gif)
    out_gif = os.path.abspath(out_gif)

    if not os.path.exists(in_gif):
        print("The input gif file does not exist.")
        return

    if not os.path.exists(os.path.dirname(out_gif)):
        os.makedirs(os.path.dirname(out_gif))

    progress_bar_color = check_color(progress_bar_color)

    try:
        image = Image.open(in_gif)
    except Exception as e:
        raise Exception("An error occurred while opening the gif.")

    count = image.n_frames
    W, H = image.size
    progress_bar_widths = [i * 1.0 / count * W for i in range(1, count + 1)]
    progress_bar_shapes = [
        [(0, H - progress_bar_height), (x, H)] for x in progress_bar_widths
    ]

    try:
        frames = []
        # Loop over each frame in the animated image
        for index, frame in enumerate(ImageSequence.Iterator(image)):
            # Draw the text on the frame
            frame = frame.convert("RGB")
            draw = ImageDraw.Draw(frame)
            # w, h = draw.textsize(text[index])
            draw.rectangle(progress_bar_shapes[index], fill=progress_bar_color)
            del draw

            b = io.BytesIO()
            frame.save(b, format="GIF")
            frame = Image.open(b)

            frames.append(frame)
        # https://www.pythoninformer.com/python-libraries/pillow/creating-animated-gif/
        # Save the frames as a new image

        frames[0].save(
            out_gif,
            save_all=True,
            append_images=frames[1:],
            duration=duration,
            loop=loop,
            optimize=True,
        )
    except Exception as e:
        raise Exception(e)

add_text_to_gif(in_gif, out_gif, xy=None, text_sequence=None, font_type='arial.ttf', font_size=20, font_color='#000000', add_progress_bar=True, progress_bar_color='white', progress_bar_height=5, duration=100, loop=0)

Adds animated text to a GIF image.

Parameters:

Name Type Description Default
in_gif str

The file path to the input GIF image.

required
out_gif str

The file path to the output GIF image.

required
xy tuple

Top left corner of the text. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

None
text_sequence int, str, list

Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.

None
font_type str

Font type. Defaults to "arial.ttf".

'arial.ttf'
font_size int

Font size. Defaults to 20.

20
font_color str

Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to '#000000'.

'#000000'
add_progress_bar bool

Whether to add a progress bar at the bottom of the GIF. Defaults to True.

True
progress_bar_color str

Color for the progress bar. Defaults to 'white'.

'white'
progress_bar_height int

Height of the progress bar. Defaults to 5.

5
duration int

controls how long each frame will be displayed for, in milliseconds. It is the inverse of the frame rate. Setting it to 100 milliseconds gives 10 frames per second. You can decrease the duration to give a smoother animation.. Defaults to 100.

100
loop int

controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.

0
Source code in geemap/timelapse.py
def add_text_to_gif(
    in_gif,
    out_gif,
    xy=None,
    text_sequence=None,
    font_type="arial.ttf",
    font_size=20,
    font_color="#000000",
    add_progress_bar=True,
    progress_bar_color="white",
    progress_bar_height=5,
    duration=100,
    loop=0,
):
    """Adds animated text to a GIF image.

    Args:
        in_gif (str): The file path to the input GIF image.
        out_gif (str): The file path to the output GIF image.
        xy (tuple, optional): Top left corner of the text. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        text_sequence (int, str, list, optional): Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.
        font_type (str, optional): Font type. Defaults to "arial.ttf".
        font_size (int, optional): Font size. Defaults to 20.
        font_color (str, optional): Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff').  Defaults to '#000000'.
        add_progress_bar (bool, optional): Whether to add a progress bar at the bottom of the GIF. Defaults to True.
        progress_bar_color (str, optional): Color for the progress bar. Defaults to 'white'.
        progress_bar_height (int, optional): Height of the progress bar. Defaults to 5.
        duration (int, optional): controls how long each frame will be displayed for, in milliseconds. It is the inverse of the frame rate. Setting it to 100 milliseconds gives 10 frames per second. You can decrease the duration to give a smoother animation.. Defaults to 100.
        loop (int, optional): controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.

    """
    # import io
    import warnings

    import pkg_resources
    from PIL import Image, ImageDraw, ImageFont, ImageSequence

    warnings.simplefilter("ignore")
    pkg_dir = os.path.dirname(pkg_resources.resource_filename("geemap", "geemap.py"))
    default_font = os.path.join(pkg_dir, "data/fonts/arial.ttf")

    in_gif = os.path.abspath(in_gif)
    out_gif = os.path.abspath(out_gif)

    if not os.path.exists(in_gif):
        print("The input gif file does not exist.")
        return

    if not os.path.exists(os.path.dirname(out_gif)):
        os.makedirs(os.path.dirname(out_gif))

    if font_type == "arial.ttf":
        font = ImageFont.truetype(default_font, font_size)
    elif font_type == "alibaba.otf":
        default_font = os.path.join(pkg_dir, "data/fonts/alibaba.otf")
        font = ImageFont.truetype(default_font, font_size)
    else:
        try:
            font_list = system_fonts(show_full_path=True)
            font_names = [os.path.basename(f) for f in font_list]
            if (font_type in font_list) or (font_type in font_names):
                font = ImageFont.truetype(font_type, font_size)
            else:
                print(
                    "The specified font type could not be found on your system. Using the default font instead."
                )
                font = ImageFont.truetype(default_font, font_size)
        except Exception as e:
            print(e)
            font = ImageFont.truetype(default_font, font_size)

    color = check_color(font_color)
    progress_bar_color = check_color(progress_bar_color)

    try:
        image = Image.open(in_gif)
    except Exception as e:
        print("An error occurred while opening the gif.")
        print(e)
        return

    count = image.n_frames
    W, H = image.size
    progress_bar_widths = [i * 1.0 / count * W for i in range(1, count + 1)]
    progress_bar_shapes = [
        [(0, H - progress_bar_height), (x, H)] for x in progress_bar_widths
    ]

    if xy is None:
        # default text location is 5% width and 5% height of the image.
        xy = (int(0.05 * W), int(0.05 * H))
    elif (xy is not None) and (not isinstance(xy, tuple)) and (len(xy) == 2):
        print("xy must be a tuple, e.g., (10, 10), ('10%', '10%')")
        return
    elif all(isinstance(item, int) for item in xy) and (len(xy) == 2):
        x, y = xy
        if (x > 0) and (x < W) and (y > 0) and (y < H):
            pass
        else:
            print(
                f"xy is out of bounds. x must be within [0, {W}], and y must be within [0, {H}]"
            )
            return
    elif all(isinstance(item, str) for item in xy) and (len(xy) == 2):
        x, y = xy
        if ("%" in x) and ("%" in y):
            try:
                x = int(float(x.replace("%", "")) / 100.0 * W)
                y = int(float(y.replace("%", "")) / 100.0 * H)
                xy = (x, y)
            except Exception:
                raise Exception(
                    "The specified xy is invalid. It must be formatted like this ('10%', '10%')"
                )
    else:
        print(
            "The specified xy is invalid. It must be formatted like this: (10, 10) or ('10%', '10%')"
        )
        return

    if text_sequence is None:
        text = [str(x) for x in range(1, count + 1)]
    elif isinstance(text_sequence, int):
        text = [str(x) for x in range(text_sequence, text_sequence + count + 1)]
    elif isinstance(text_sequence, str):
        try:
            text_sequence = int(text_sequence)
            text = [str(x) for x in range(text_sequence, text_sequence + count + 1)]
        except Exception:
            text = [text_sequence] * count
    elif isinstance(text_sequence, list) and len(text_sequence) != count:
        print(
            f"The length of the text sequence must be equal to the number ({count}) of frames in the gif."
        )
        return
    else:
        text = [str(x) for x in text_sequence]

    try:
        frames = []
        # Loop over each frame in the animated image
        for index, frame in enumerate(ImageSequence.Iterator(image)):
            # Draw the text on the frame
            frame = frame.convert("RGB")
            draw = ImageDraw.Draw(frame)
            # w, h = draw.textsize(text[index])
            draw.text(xy, text[index], font=font, fill=color)
            if add_progress_bar:
                draw.rectangle(progress_bar_shapes[index], fill=progress_bar_color)
            del draw

            b = io.BytesIO()
            frame.save(b, format="GIF")
            frame = Image.open(b)

            frames.append(frame)
        # https://www.pythoninformer.com/python-libraries/pillow/creating-animated-gif/
        # Save the frames as a new image

        frames[0].save(
            out_gif,
            save_all=True,
            append_images=frames[1:],
            duration=duration,
            loop=loop,
            optimize=True,
        )
    except Exception as e:
        print(e)

create_timelapse(collection, start_date, end_date, region=None, bands=None, frequency='year', reducer='median', date_format=None, out_gif=None, palette=None, vis_params=None, dimensions=768, frames_per_second=10, crs='EPSG:3857', overlay_data=None, overlay_color='black', overlay_width=1, overlay_opacity=1.0, title=None, title_xy=('2%', '90%'), add_text=True, text_xy=('2%', '2%'), text_sequence=None, font_type='arial.ttf', font_size=20, font_color='white', add_progress_bar=True, progress_bar_color='white', progress_bar_height=5, add_colorbar=False, colorbar_width=6.0, colorbar_height=0.4, colorbar_label=None, colorbar_label_size=12, colorbar_label_weight='normal', colorbar_tick_size=10, colorbar_bg_color=None, colorbar_orientation='horizontal', colorbar_dpi='figure', colorbar_xy=None, colorbar_size=(300, 300), loop=0, mp4=False, fading=False, parallel_scale=1, step=1)

Create a timelapse from any ee.ImageCollection.

Parameters:

Name Type Description Default
collection str | ee.ImageCollection

The collection of images to create a timeseries from. It can be a string representing the collection ID or an ee.ImageCollection object.

required
start_date str

The start date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'.

required
end_date str

The end date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'.

required
region ee.Geometry

The region to use to filter the collection of images. It must be an ee.Geometry object. Defaults to None.

None
bands list

A list of band names to use in the timelapse. Defaults to None.

None
frequency str

The frequency of the timeseries. It must be one of the following: 'year', 'month', 'day', 'hour', 'minute', 'second'. Defaults to 'year'.

'year'
reducer str

The reducer to use to reduce the collection of images to a single value. It can be one of the following: 'median', 'mean', 'min', 'max', 'variance', 'sum'. Defaults to 'median'.

'median'
drop_empty bool

Whether to drop empty images from the timeseries. Defaults to True.

required
date_format str

A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'.

None
out_gif str

The output gif file path. Defaults to None.

None
palette list

A list of colors to render a single-band image in the timelapse. Defaults to None.

None
vis_params dict

A dictionary of visualization parameters to use in the timelapse. Defaults to None. See more at https://developers.google.com/earth-engine/guides/image_visualization.

None
dimensions int

a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.

768
frames_per_second int

Animation speed. Defaults to 10.

10
crs str

The coordinate reference system to use. Defaults to "EPSG:3857".

'EPSG:3857'
overlay_data int, str, list

Administrative boundary to be drawn on the timelapse. Defaults to None.

None
overlay_color str

Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.

'black'
overlay_width int

Width of the overlay. Defaults to 1.

1
overlay_opacity float

Opacity of the overlay. Defaults to 1.0.

1.0
title str

The title of the timelapse. Defaults to None.

None
title_xy tuple

Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

('2%', '90%')
add_text bool

Whether to add animated text to the timelapse. Defaults to True.

True
title_xy tuple

Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

('2%', '90%')
text_sequence int, str, list

Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.

None
font_type str

Font type. Defaults to "arial.ttf".

'arial.ttf'
font_size int

Font size. Defaults to 20.

20
font_color str

Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to '#000000'.

'white'
add_progress_bar bool

Whether to add a progress bar at the bottom of the GIF. Defaults to True.

True
progress_bar_color str

Color for the progress bar. Defaults to 'white'.

'white'
progress_bar_height int

Height of the progress bar. Defaults to 5.

5
add_colorbar bool

Whether to add a colorbar to the timelapse. Defaults to False.

False
colorbar_width float

Width of the colorbar. Defaults to 6.0.

6.0
colorbar_height float

Height of the colorbar. Defaults to 0.4.

0.4
colorbar_label str

Label for the colorbar. Defaults to None.

None
colorbar_label_size int

Font size for the colorbar label. Defaults to 12.

12
colorbar_label_weight str

Font weight for the colorbar label. Defaults to 'normal'.

'normal'
colorbar_tick_size int

Font size for the colorbar ticks. Defaults to 10.

10
colorbar_bg_color str

Background color for the colorbar, can be color like "white", "black". Defaults to None.

None
colorbar_orientation str

Orientation of the colorbar. Defaults to 'horizontal'.

'horizontal'
colorbar_dpi str

DPI for the colorbar, can be numbers like 100, 300. Defaults to 'figure'.

'figure'
colorbar_xy tuple

Lower left corner of the colorbar. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

None
colorbar_size tuple

Size of the colorbar. It can be formatted like this: (300, 300). Defaults to (300, 300).

(300, 300)
loop int

Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.

0
mp4 bool

Whether to create an mp4 file. Defaults to False.

False
fading int | bool

If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).

False
parallel_scale int

A scaling factor used to limit memory use; using a larger parallel_scale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1.

1
step int

The step size to use when creating the date sequence. Defaults to 1.

1

Returns:

Type Description
str

File path to the timelapse gif.

Source code in geemap/timelapse.py
def create_timelapse(
    collection,
    start_date,
    end_date,
    region=None,
    bands=None,
    frequency="year",
    reducer="median",
    date_format=None,
    out_gif=None,
    palette=None,
    vis_params=None,
    dimensions=768,
    frames_per_second=10,
    crs="EPSG:3857",
    overlay_data=None,
    overlay_color="black",
    overlay_width=1,
    overlay_opacity=1.0,
    title=None,
    title_xy=("2%", "90%"),
    add_text=True,
    text_xy=("2%", "2%"),
    text_sequence=None,
    font_type="arial.ttf",
    font_size=20,
    font_color="white",
    add_progress_bar=True,
    progress_bar_color="white",
    progress_bar_height=5,
    add_colorbar=False,
    colorbar_width=6.0,
    colorbar_height=0.4,
    colorbar_label=None,
    colorbar_label_size=12,
    colorbar_label_weight="normal",
    colorbar_tick_size=10,
    colorbar_bg_color=None,
    colorbar_orientation="horizontal",
    colorbar_dpi="figure",
    colorbar_xy=None,
    colorbar_size=(300, 300),
    loop=0,
    mp4=False,
    fading=False,
    parallel_scale=1,
    step=1,
):
    """Create a timelapse from any ee.ImageCollection.

    Args:
        collection (str | ee.ImageCollection): The collection of images to create a timeseries from. It can be a string representing the collection ID or an ee.ImageCollection object.
        start_date (str): The start date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'.
        end_date (str): The end date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'.
        region (ee.Geometry, optional): The region to use to filter the collection of images. It must be an ee.Geometry object. Defaults to None.
        bands (list, optional): A list of band names to use in the timelapse. Defaults to None.
        frequency (str, optional): The frequency of the timeseries. It must be one of the following: 'year', 'month', 'day', 'hour', 'minute', 'second'. Defaults to 'year'.
        reducer (str, optional):  The reducer to use to reduce the collection of images to a single value. It can be one of the following: 'median', 'mean', 'min', 'max', 'variance', 'sum'. Defaults to 'median'.
        drop_empty (bool, optional): Whether to drop empty images from the timeseries. Defaults to True.
        date_format (str, optional): A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'.
        out_gif (str): The output gif file path. Defaults to None.
        palette (list, optional): A list of colors to render a single-band image in the timelapse. Defaults to None.
        vis_params (dict, optional): A dictionary of visualization parameters to use in the timelapse. Defaults to None. See more at https://developers.google.com/earth-engine/guides/image_visualization.
        dimensions (int, optional): a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.
        frames_per_second (int, optional): Animation speed. Defaults to 10.
        crs (str, optional): The coordinate reference system to use. Defaults to "EPSG:3857".
        overlay_data (int, str, list, optional): Administrative boundary to be drawn on the timelapse. Defaults to None.
        overlay_color (str, optional): Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.
        overlay_width (int, optional): Width of the overlay. Defaults to 1.
        overlay_opacity (float, optional): Opacity of the overlay. Defaults to 1.0.
        title (str, optional): The title of the timelapse. Defaults to None.
        title_xy (tuple, optional): Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        add_text (bool, optional): Whether to add animated text to the timelapse. Defaults to True.
        title_xy (tuple, optional): Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        text_sequence (int, str, list, optional): Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.
        font_type (str, optional): Font type. Defaults to "arial.ttf".
        font_size (int, optional): Font size. Defaults to 20.
        font_color (str, optional): Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff').  Defaults to '#000000'.
        add_progress_bar (bool, optional): Whether to add a progress bar at the bottom of the GIF. Defaults to True.
        progress_bar_color (str, optional): Color for the progress bar. Defaults to 'white'.
        progress_bar_height (int, optional): Height of the progress bar. Defaults to 5.
        add_colorbar (bool, optional): Whether to add a colorbar to the timelapse. Defaults to False.
        colorbar_width (float, optional): Width of the colorbar. Defaults to 6.0.
        colorbar_height (float, optional): Height of the colorbar. Defaults to 0.4.
        colorbar_label (str, optional): Label for the colorbar. Defaults to None.
        colorbar_label_size (int, optional): Font size for the colorbar label. Defaults to 12.
        colorbar_label_weight (str, optional): Font weight for the colorbar label. Defaults to 'normal'.
        colorbar_tick_size (int, optional): Font size for the colorbar ticks. Defaults to 10.
        colorbar_bg_color (str, optional): Background color for the colorbar, can be color like "white", "black". Defaults to None.
        colorbar_orientation (str, optional): Orientation of the colorbar. Defaults to 'horizontal'.
        colorbar_dpi (str, optional): DPI for the colorbar, can be numbers like 100, 300. Defaults to 'figure'.
        colorbar_xy (tuple, optional): Lower left corner of the colorbar. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        colorbar_size (tuple, optional): Size of the colorbar. It can be formatted like this: (300, 300). Defaults to (300, 300).
        loop (int, optional): Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.
        mp4 (bool, optional): Whether to create an mp4 file. Defaults to False.
        fading (int | bool, optional): If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).
        parallel_scale (int, optional): A scaling factor used to limit memory use; using a larger parallel_scale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1.
        step (int, optional): The step size to use when creating the date sequence. Defaults to 1.

    Returns:
        str: File path to the timelapse gif.
    """
    import geemap.colormaps as cm

    if not isinstance(collection, ee.ImageCollection):
        if isinstance(collection, str):
            collection = ee.ImageCollection(collection)
        else:
            raise Exception(
                "The collection must be an ee.ImageCollection object or asset id."
            )

    col = create_timeseries(
        collection,
        start_date,
        end_date,
        region=region,
        bands=bands,
        frequency=frequency,
        reducer=reducer,
        drop_empty=True,
        date_format=date_format,
        parallel_scale=parallel_scale,
        step=step,
    )

    # rename the bands to remove the '_reducer' characters from the band names.
    col = col.map(
        lambda img: img.rename(
            img.bandNames().map(lambda name: ee.String(name).replace(f"_{reducer}", ""))
        )
    )

    if out_gif is None:
        out_gif = temp_file_path(".gif")
    else:
        out_gif = check_file_path(out_gif)

    out_dir = os.path.dirname(out_gif)

    if bands is None:
        names = col.first().bandNames().getInfo()
        if len(names) < 3:
            bands = [names[0]]
        else:
            bands = names[:3][::-1]
    elif isinstance(bands, str):
        bands = [bands]
    elif not isinstance(bands, list):
        raise Exception("The bands must be a string or a list of strings.")

    if isinstance(palette, str):
        palette = cm.get_palette(palette, 15)
    elif isinstance(palette, list) or isinstance(palette, tuple):
        pass
    elif palette is not None:
        raise Exception("The palette must be a string or a list of strings.")

    if vis_params is None:
        img = col.first().select(bands)
        scale = collection.first().select(0).projection().nominalScale().multiply(10)
        min_value = min(
            image_min_value(img, region=region, scale=scale).getInfo().values()
        )
        max_value = max(
            image_max_value(img, region=region, scale=scale).getInfo().values()
        )
        vis_params = {"bands": bands, "min": min_value, "max": max_value}

        if len(bands) == 1:
            if palette is not None:
                vis_params["palette"] = palette
            else:
                vis_params["palette"] = cm.palettes.ndvi
    elif isinstance(vis_params, dict):
        if "bands" not in vis_params:
            vis_params["bands"] = bands
        if "min" not in vis_params:
            img = col.first().select(bands)
            scale = (
                collection.first().select(0).projection().nominalScale().multiply(10)
            )
            vis_params["min"] = min(
                image_min_value(img, region=region, scale=scale).getInfo().values()
            )
        if "max" not in vis_params:
            img = col.first().select(bands)
            scale = (
                collection.first().select(0).projection().nominalScale().multiply(10)
            )
            vis_params["max"] = max(
                image_max_value(img, region=region, scale=scale).getInfo().values()
            )
        if palette is None and (len(bands) == 1) and ("palette" not in vis_params):
            vis_params["palette"] = cm.palettes.ndvi
        elif palette is not None and ("palette" not in vis_params):
            vis_params["palette"] = palette
        if len(bands) > 1 and "palette" in vis_params:
            del vis_params["palette"]
    else:
        raise Exception("The vis_params must be a dictionary.")

    col = col.select(bands).map(
        lambda img: img.visualize(**vis_params).set(
            {
                "system:time_start": img.get("system:time_start"),
                "system:date": img.get("system:date"),
            }
        )
    )

    if overlay_data is not None:
        col = add_overlay(
            col, overlay_data, overlay_color, overlay_width, overlay_opacity
        )

    video_args = {}
    video_args["dimensions"] = dimensions
    video_args["region"] = region
    video_args["framesPerSecond"] = frames_per_second
    video_args["crs"] = crs
    video_args["min"] = 0
    video_args["max"] = 255

    # if crs is not None:
    #     video_args["crs"] = crs

    if "palette" in vis_params or len(bands) > 1:
        video_args["bands"] = ["vis-red", "vis-green", "vis-blue"]
    else:
        video_args["bands"] = ["vis-gray"]

    if (
        isinstance(dimensions, int)
        and dimensions > 768
        or isinstance(dimensions, str)
        and any(dim > 768 for dim in list(map(int, dimensions.split("x"))))
    ):
        count = col.size().getInfo()
        basename = os.path.basename(out_gif)[:-4]
        names = [
            os.path.join(
                out_dir, f"{basename}_{str(i+1).zfill(int(len(str(count))))}.jpg"
            )
            for i in range(count)
        ]
        get_image_collection_thumbnails(
            col,
            out_dir,
            vis_params={
                "min": 0,
                "max": 255,
                "bands": video_args["bands"],
            },
            dimensions=dimensions,
            names=names,
        )
        make_gif(
            names,
            out_gif,
            fps=frames_per_second,
            loop=loop,
            mp4=False,
            clean_up=True,
        )
    else:
        download_ee_video(col, video_args, out_gif)

    if title is not None and isinstance(title, str):
        add_text_to_gif(
            out_gif,
            out_gif,
            xy=title_xy,
            text_sequence=title,
            font_type=font_type,
            font_size=font_size,
            font_color=font_color,
            add_progress_bar=add_progress_bar,
            progress_bar_color=progress_bar_color,
            progress_bar_height=progress_bar_height,
            duration=1000 / frames_per_second,
            loop=loop,
        )
    if add_text:
        if text_sequence is None:
            text_sequence = col.aggregate_array("system:date").getInfo()
        add_text_to_gif(
            out_gif,
            out_gif,
            xy=text_xy,
            text_sequence=text_sequence,
            font_type=font_type,
            font_size=font_size,
            font_color=font_color,
            add_progress_bar=add_progress_bar,
            progress_bar_color=progress_bar_color,
            progress_bar_height=progress_bar_height,
            duration=1000 / frames_per_second,
            loop=loop,
        )
    if add_colorbar:
        colorbar = save_colorbar(
            None,
            colorbar_width,
            colorbar_height,
            vis_params["min"],
            vis_params["max"],
            vis_params["palette"],
            label=colorbar_label,
            label_size=colorbar_label_size,
            label_weight=colorbar_label_weight,
            tick_size=colorbar_tick_size,
            bg_color=colorbar_bg_color,
            orientation=colorbar_orientation,
            dpi=colorbar_dpi,
            show_colorbar=False,
        )
        add_image_to_gif(out_gif, out_gif, colorbar, colorbar_xy, colorbar_size)

    if os.path.exists(out_gif):
        reduce_gif_size(out_gif)

    if isinstance(fading, bool):
        fading = int(fading)
    if fading > 0:
        gif_fading(out_gif, out_gif, duration=fading, verbose=False)

    if mp4:
        out_mp4 = out_gif.replace(".gif", ".mp4")
        gif_to_mp4(out_gif, out_mp4)

    return out_gif

create_timeseries(collection, start_date, end_date, region=None, bands=None, frequency='year', reducer='median', drop_empty=True, date_format=None, parallel_scale=1, step=1)

Creates a timeseries from a collection of images by a specified frequency and reducer.

Parameters:

Name Type Description Default
collection str | ee.ImageCollection

The collection of images to create a timeseries from. It can be a string representing the collection ID or an ee.ImageCollection object.

required
start_date str

The start date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'.

required
end_date str

The end date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'.

required
region ee.Geometry

The region to use to filter the collection of images. It must be an ee.Geometry object. Defaults to None.

None
bands list

The list of bands to use to create the timeseries. It must be a list of strings. Defaults to None.

None
frequency str

The frequency of the timeseries. It must be one of the following: 'year', 'month', 'day', 'hour', 'minute', 'second'. Defaults to 'year'.

'year'
reducer str

The reducer to use to reduce the collection of images to a single value. It can be one of the following: 'median', 'mean', 'min', 'max', 'variance', 'sum'. Defaults to 'median'.

'median'
drop_empty bool

Whether to drop empty images from the timeseries. Defaults to True.

True
date_format str

A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'.

None
parallel_scale int

A scaling factor used to limit memory use; using a larger parallel_scale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1.

1
step int

The step size to use when creating the date sequence. Defaults to 1.

1

Returns:

Type Description
ee.ImageCollection

The timeseries.

Source code in geemap/timelapse.py
def create_timeseries(
    collection,
    start_date,
    end_date,
    region=None,
    bands=None,
    frequency="year",
    reducer="median",
    drop_empty=True,
    date_format=None,
    parallel_scale=1,
    step=1,
):
    """Creates a timeseries from a collection of images by a specified frequency and reducer.

    Args:
        collection (str | ee.ImageCollection): The collection of images to create a timeseries from. It can be a string representing the collection ID or an ee.ImageCollection object.
        start_date (str): The start date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'.
        end_date (str): The end date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'.
        region (ee.Geometry, optional): The region to use to filter the collection of images. It must be an ee.Geometry object. Defaults to None.
        bands (list, optional): The list of bands to use to create the timeseries. It must be a list of strings. Defaults to None.
        frequency (str, optional): The frequency of the timeseries. It must be one of the following: 'year', 'month', 'day', 'hour', 'minute', 'second'. Defaults to 'year'.
        reducer (str, optional):  The reducer to use to reduce the collection of images to a single value. It can be one of the following: 'median', 'mean', 'min', 'max', 'variance', 'sum'. Defaults to 'median'.
        drop_empty (bool, optional): Whether to drop empty images from the timeseries. Defaults to True.
        date_format (str, optional): A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'.
        parallel_scale (int, optional): A scaling factor used to limit memory use; using a larger parallel_scale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1.
        step (int, optional): The step size to use when creating the date sequence. Defaults to 1.

    Returns:
        ee.ImageCollection: The timeseries.
    """
    if not isinstance(collection, ee.ImageCollection):
        if isinstance(collection, str):
            collection = ee.ImageCollection(collection)
        else:
            raise Exception(
                "The collection must be an ee.ImageCollection object or asset id."
            )

    if bands is not None:
        collection = collection.select(bands)
    else:
        bands = collection.first().bandNames()

    feq_dict = {
        "year": "YYYY",
        "month": "YYYY-MM",
        "quarter": "YYYY-MM",
        "week": "YYYY-MM-dd",
        "day": "YYYY-MM-dd",
        "hour": "YYYY-MM-dd HH",
        "minute": "YYYY-MM-dd HH:mm",
        "second": "YYYY-MM-dd HH:mm:ss",
    }

    if date_format is None:
        date_format = feq_dict[frequency]

    dates = date_sequence(start_date, end_date, frequency, date_format, step)

    try:
        reducer = eval(f"ee.Reducer.{reducer}()")
    except Exception as e:
        print("The provided reducer is invalid.")
        raise Exception(e)

    def create_image(date):
        start = ee.Date(date)
        if frequency == "quarter":
            end = start.advance(3, "month")
        else:
            end = start.advance(1, frequency)

        if region is None:
            sub_col = collection.filterDate(start, end)
            image = sub_col.reduce(reducer, parallel_scale)

        else:
            sub_col = collection.filterDate(start, end).filterBounds(region)
            image = ee.Image(
                ee.Algorithms.If(
                    ee.Algorithms.ObjectType(region).equals("FeatureCollection"),
                    sub_col.reduce(reducer, parallel_scale).clipToCollection(region),
                    sub_col.reduce(reducer, parallel_scale).clip(region),
                )
            )
        return image.set(
            {
                "system:time_start": ee.Date(date).millis(),
                "system:date": ee.Date(date).format(date_format),
                "empty": sub_col.limit(1).size().eq(0),
            }
        ).rename(bands)

    try:
        images = ee.ImageCollection(dates.map(create_image))
        if drop_empty:
            return images.filterMetadata("empty", "equals", 0)
        else:
            return images
    except Exception as e:
        raise Exception(e)

dynamic_world_timeseries(region, start_date='2016-01-01', end_date='2021-12-31', cloud_pct=30, frequency='year', reducer='mode', drop_empty=True, date_format=None, return_type='hillshade', parallel_scale=1)

Create Dynamic World timeseries.

Parameters:

Name Type Description Default
region ee.Geometry | ee.FeatureCollection

The region of interest.

required
start_date str | ee.Date

The start date of the query. Default to "2016-01-01".

'2016-01-01'
end_date str | ee.Date

The end date of the query. Default to "2021-12-31".

'2021-12-31'
cloud_pct int

The cloud percentage threshold (<=). Defaults to 30.

30
frequency str

The frequency of the timeseries. It must be one of the following: 'year', 'month', 'day', 'hour', 'minute', 'second'. Defaults to 'year'.

'year'
reducer str

The reducer to be used. Defaults to "mode".

'mode'
drop_empty bool

Whether to drop empty images from the timeseries. Defaults to True.

True
date_format str

A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'.

None
return_type str

The type of image to be returned. Can be one of 'hillshade', 'visualize', 'class', or 'probability'. Default to "hillshade".

'hillshade'
parallel_scale int

A scaling factor used to limit memory use; using a larger parallel_scale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1.

1

Returns:

Type Description
ee.ImageCollection

An ImageCollection of the Dynamic World land cover timeseries.

Source code in geemap/timelapse.py
def dynamic_world_timeseries(
    region,
    start_date="2016-01-01",
    end_date="2021-12-31",
    cloud_pct=30,
    frequency="year",
    reducer="mode",
    drop_empty=True,
    date_format=None,
    return_type="hillshade",
    parallel_scale=1,
):
    """Create Dynamic World timeseries.

    Args:
        region (ee.Geometry | ee.FeatureCollection): The region of interest.
        start_date (str | ee.Date): The start date of the query. Default to "2016-01-01".
        end_date (str | ee.Date): The end date of the query. Default to "2021-12-31".
        cloud_pct (int, optional): The cloud percentage threshold (<=). Defaults to 30.
        frequency (str, optional): The frequency of the timeseries. It must be one of the following: 'year', 'month', 'day', 'hour', 'minute', 'second'. Defaults to 'year'.
        reducer (str, optional): The reducer to be used. Defaults to "mode".
        drop_empty (bool, optional): Whether to drop empty images from the timeseries. Defaults to True.
        date_format (str, optional): A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'.
        return_type (str, optional): The type of image to be returned. Can be one of 'hillshade', 'visualize', 'class', or 'probability'. Default to "hillshade".
        parallel_scale (int, optional): A scaling factor used to limit memory use; using a larger parallel_scale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1.

    Returns:
        ee.ImageCollection: An ImageCollection of the Dynamic World land cover timeseries.
    """
    if return_type not in ["hillshade", "visualize", "class", "probability"]:
        raise ValueError(
            f"{return_type} must be one of 'hillshade', 'visualize', 'class', or 'probability'."
        )

    if (
        isinstance(region, ee.FeatureCollection)
        or isinstance(region, ee.Feature)
        or isinstance(region, ee.Geometry)
    ):
        pass
    else:
        raise ValueError(
            f"{region} must be one of ee.FeatureCollection, ee.Feature, or ee.Geometry."
        )

    if cloud_pct < 0 or cloud_pct > 100:
        raise ValueError(f"{cloud_pct} must be between 0 and 100.")

    s2 = (
        ee.ImageCollection("COPERNICUS/S2_HARMONIZED")
        .filterDate(start_date, end_date)
        .filterBounds(region)
        .filter(ee.Filter.lte("CLOUDY_PIXEL_PERCENTAGE", cloud_pct))
    )

    ids = s2.aggregate_array("system:index")

    dw = ee.ImageCollection("GOOGLE/DYNAMICWORLD/V1").filter(
        ee.Filter.inList("system:index", ids)
    )

    collection = dw.select("label")

    dwVisParams = {
        "min": 0,
        "max": 8,
        "palette": [
            "#419BDF",
            "#397D49",
            "#88B053",
            "#7A87C6",
            "#E49635",
            "#DFC35A",
            "#C4281B",
            "#A59B8F",
            "#B39FE1",
        ],
    }

    images = create_timeseries(
        collection,
        start_date,
        end_date,
        region,
        None,
        frequency,
        reducer,
        drop_empty,
        date_format,
        parallel_scale,
    )

    if return_type == "class":
        return images
    elif return_type == "visualize":
        result = images.map(lambda img: img.visualize(**dwVisParams))
        return result
    else:
        # Create a Top-1 Probability Hillshade Visualization
        probabilityBands = [
            "water",
            "trees",
            "grass",
            "flooded_vegetation",
            "crops",
            "shrub_and_scrub",
            "built",
            "bare",
            "snow_and_ice",
        ]

        # Select probability bands
        probabilityCol = dw.select(probabilityBands)

        prob_col = create_timeseries(
            probabilityCol,
            start_date,
            end_date,
            region,
            None,
            frequency,
            "mean",
            drop_empty,
            date_format,
            parallel_scale,
        )

        prob_images = ee.ImageCollection(
            prob_col.map(
                lambda img: img.reduce(ee.Reducer.max()).set(
                    "system:time_start", img.get("system:time_start")
                )
            )
        )

        if return_type == "probability":
            return prob_images

        elif return_type == "hillshade":
            count = prob_images.size()
            nums = ee.List.sequence(0, count.subtract(1))

            def create_hillshade(d):
                proj = ee.Projection("EPSG:3857").atScale(10)
                img = ee.Image(images.toList(images.size()).get(d))
                prob_img = ee.Image(prob_images.toList(prob_images.size()).get(d))
                prob_img = prob_img.setDefaultProjection(proj)
                top1Confidence = prob_img.multiply(100).int()
                hillshade = ee.Terrain.hillshade(top1Confidence).divide(255)
                rgbImage = img.visualize(**dwVisParams).divide(255)
                probabilityHillshade = rgbImage.multiply(hillshade)
                return probabilityHillshade.set(
                    "system:time_start", img.get("system:time_start")
                )

            result = ee.ImageCollection(nums.map(create_hillshade))
            return result

gif_fading(in_gif, out_gif, duration=1, verbose=True)

Fade in/out the gif.

Parameters:

Name Type Description Default
in_gif str

The input gif file. Can be a directory path or http URL, e.g., "https://i.imgur.com/ZWSZC5z.gif"

required
out_gif str

The output gif file.

required
duration float

The duration of the fading. Defaults to 1.

1
verbose bool

Whether to print the progress. Defaults to True.

True

Exceptions:

Type Description
FileNotFoundError

Raise exception when the input gif does not exist.

Exception

Raise exception when ffmpeg is not installed.

Source code in geemap/timelapse.py
def gif_fading(in_gif, out_gif, duration=1, verbose=True):
    """Fade in/out the gif.

    Args:
        in_gif (str): The input gif file. Can be a directory path or http URL, e.g., "https://i.imgur.com/ZWSZC5z.gif"
        out_gif (str): The output gif file.
        duration (float, optional): The duration of the fading. Defaults to 1.
        verbose (bool, optional): Whether to print the progress. Defaults to True.

    Raises:
        FileNotFoundError: Raise exception when the input gif does not exist.
        Exception: Raise exception when ffmpeg is not installed.
    """
    import glob
    import tempfile

    current_dir = os.getcwd()

    if isinstance(in_gif, str) and in_gif.startswith("http"):
        ext = os.path.splitext(in_gif)[1]
        file_path = temp_file_path(ext)
        download_from_url(in_gif, file_path, verbose=verbose)
        in_gif = file_path

    in_gif = os.path.abspath(in_gif)
    if not in_gif.endswith(".gif"):
        raise Exception("in_gif must be a gif file.")

    if " " in in_gif:
        raise Exception("The filename cannot contain spaces.")

    out_gif = os.path.abspath(out_gif)
    if not os.path.exists(os.path.dirname(out_gif)):
        os.makedirs(os.path.dirname(out_gif))

    if not os.path.exists(in_gif):
        raise FileNotFoundError(f"{in_gif} does not exist.")

    basename = os.path.basename(in_gif).replace(".gif", "")
    temp_dir = os.path.join(tempfile.gettempdir(), basename)
    if os.path.exists(temp_dir):
        shutil.rmtree(temp_dir)

    gif_to_png(in_gif, temp_dir, verbose=verbose)

    os.chdir(temp_dir)

    images = list(glob.glob(os.path.join(temp_dir, "*.png")))
    count = len(images)

    files = []
    for i in range(1, count + 1):
        files.append(f"-loop 1 -t {duration} -i {i}.png")
    inputs = " ".join(files)

    filters = []
    for i in range(1, count):
        if i == 1:
            filters.append(
                f"\"[1:v][0:v]blend=all_expr='A*(if(gte(T,3),1,T/3))+B*(1-(if(gte(T,3),1,T/3)))'[v0];"
            )
        else:
            filters.append(
                f"[{i}:v][{i-1}:v]blend=all_expr='A*(if(gte(T,3),1,T/3))+B*(1-(if(gte(T,3),1,T/3)))'[v{i-1}];"
            )

    last_filter = ""
    for i in range(count - 1):
        last_filter += f"[v{i}]"
    last_filter += f'concat=n={count-1}:v=1:a=0[v]" -map "[v]"'
    filters.append(last_filter)
    filters = " ".join(filters)

    cmd = f"ffmpeg -y -loglevel error {inputs} -filter_complex {filters} {out_gif}"

    # if fade >= duration:
    #     duration = fade + 1

    # files = []
    # for i in range(1, count + 1):
    #     files.append(f"-framerate {framerate} -loop 1 -t {duration} -i {i}.png")

    # inputs = " ".join(files)

    # filters = []
    # for i in range(count):
    #     if i == 0:
    #         filters.append(f'"[0:v]fade=t=out:st=4:d={fade}[v0];')
    #     else:
    #         filters.append(
    #             f"[{i}:v]fade=t=in:st=0:d={fade},fade=t=out:st=4:d={fade}[v{i}];"
    #         )

    # last_filter = ""
    # for i in range(count):
    #     last_filter += f"[v{i}]"
    # last_filter += f"concat=n={count}:v=1:a=0,split[v0][v1];"
    # filters.append(last_filter)
    # palette = f'[v0]palettegen[p];[v1][p]paletteuse[v]" -map "[v]"'
    # filters.append(palette)
    # filters = " ".join(filters)

    # cmd = f"ffmpeg -y {inputs} -filter_complex {filters} {out_gif}"

    os.system(cmd)
    try:
        shutil.rmtree(temp_dir)
    except Exception as e:
        print(e)

    os.chdir(current_dir)

gif_to_mp4(in_gif, out_mp4)

Converts a gif to mp4.

Parameters:

Name Type Description Default
in_gif str

The input gif file.

required
out_mp4 str

The output mp4 file.

required
Source code in geemap/timelapse.py
def gif_to_mp4(in_gif, out_mp4):
    """Converts a gif to mp4.

    Args:
        in_gif (str): The input gif file.
        out_mp4 (str): The output mp4 file.
    """
    from PIL import Image

    if not os.path.exists(in_gif):
        raise FileNotFoundError(f"{in_gif} does not exist.")

    out_mp4 = os.path.abspath(out_mp4)
    if not out_mp4.endswith(".mp4"):
        out_mp4 = out_mp4 + ".mp4"

    if not os.path.exists(os.path.dirname(out_mp4)):
        os.makedirs(os.path.dirname(out_mp4))

    if not is_tool("ffmpeg"):
        print("ffmpeg is not installed on your computer.")
        return

    width, height = Image.open(in_gif).size

    if width % 2 == 0 and height % 2 == 0:
        cmd = f"ffmpeg -loglevel error -i {in_gif} -vcodec libx264 -crf 25 -pix_fmt yuv420p {out_mp4}"
        os.system(cmd)
    else:
        width += width % 2
        height += height % 2
        cmd = f"ffmpeg -loglevel error -i {in_gif} -vf scale={width}:{height} -vcodec libx264 -crf 25 -pix_fmt yuv420p {out_mp4}"
        os.system(cmd)

    if not os.path.exists(out_mp4):
        raise Exception(f"Failed to create mp4 file.")

gif_to_png(in_gif, out_dir=None, prefix='', verbose=True)

Converts a gif to png.

Parameters:

Name Type Description Default
in_gif str

The input gif file.

required
out_dir str

The output directory. Defaults to None.

None
prefix str

The prefix of the output png files. Defaults to None.

''
verbose bool

Whether to print the progress. Defaults to True.

True

Exceptions:

Type Description
FileNotFoundError

Raise exception when the input gif does not exist.

Exception

Raise exception when ffmpeg is not installed.

Source code in geemap/timelapse.py
def gif_to_png(in_gif, out_dir=None, prefix="", verbose=True):
    """Converts a gif to png.

    Args:
        in_gif (str): The input gif file.
        out_dir (str, optional): The output directory. Defaults to None.
        prefix (str, optional): The prefix of the output png files. Defaults to None.
        verbose (bool, optional): Whether to print the progress. Defaults to True.

    Raises:
        FileNotFoundError: Raise exception when the input gif does not exist.
        Exception: Raise exception when ffmpeg is not installed.
    """
    import tempfile

    in_gif = os.path.abspath(in_gif)
    if " " in in_gif:
        raise Exception("in_gif cannot contain spaces.")
    if not os.path.exists(in_gif):
        raise FileNotFoundError(f"{in_gif} does not exist.")

    basename = os.path.basename(in_gif).replace(".gif", "")
    if out_dir is None:
        out_dir = os.path.join(tempfile.gettempdir(), basename)
        if not os.path.exists(out_dir):
            os.makedirs(out_dir)
    elif isinstance(out_dir, str) and not os.path.exists(out_dir):
        os.makedirs(out_dir)
    elif not isinstance(out_dir, str):
        raise Exception("out_dir must be a string.")

    out_dir = os.path.abspath(out_dir)
    cmd = f"ffmpeg -loglevel error -i {in_gif} -vsync 0 {out_dir}/{prefix}%d.png"
    os.system(cmd)

    if verbose:
        print(f"Images are saved to {out_dir}")

goes_fire_timelapse(roi=None, out_gif=None, start_date='2020-09-05T15:00', end_date='2020-09-06T02:00', data='GOES-17', scan='full_disk', dimensions=768, framesPerSecond=10, date_format='YYYY-MM-dd HH:mm', xy=('3%', '3%'), text_sequence=None, font_type='arial.ttf', font_size=20, font_color='#ffffff', add_progress_bar=True, progress_bar_color='white', progress_bar_height=5, loop=0, crs=None, overlay_data=None, overlay_color='#000000', overlay_width=1, overlay_opacity=1.0, mp4=False, fading=False, **kwargs)

Create a timelapse of GOES fire data. The code is adapted from Justin Braaten's code: https://code.earthengine.google.com/8a083a7fb13b95ad4ba148ed9b65475e. Credits to Justin Braaten. See also https://jstnbraaten.medium.com/goes-in-earth-engine-53fbc8783c16

Parameters:

Name Type Description Default
out_gif str

The file path to save the gif.

None
start_date str

The start date of the time series. Defaults to "2021-10-24T14:00:00".

'2020-09-05T15:00'
end_date str

The end date of the time series. Defaults to "2021-10-25T01:00:00".

'2020-09-06T02:00'
data str

The GOES satellite data to use. Defaults to "GOES-17".

'GOES-17'
scan str

The GOES scan to use. Defaults to "full_disk".

'full_disk'
region ee.Geometry

The region of interest. Defaults to None.

required
dimensions int

a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.

768
frames_per_second int

Animation speed. Defaults to 10.

required
date_format str

The date format to use. Defaults to "YYYY-MM-dd HH:mm".

'YYYY-MM-dd HH:mm'
xy tuple

Top left corner of the text. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

('3%', '3%')
text_sequence int, str, list

Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.

None
font_type str

Font type. Defaults to "arial.ttf".

'arial.ttf'
font_size int

Font size. Defaults to 20.

20
font_color str

Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to '#000000'.

'#ffffff'
add_progress_bar bool

Whether to add a progress bar at the bottom of the GIF. Defaults to True.

True
progress_bar_color str

Color for the progress bar. Defaults to 'white'.

'white'
progress_bar_height int

Height of the progress bar. Defaults to 5.

5
loop int

controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.

0
crs str

The coordinate reference system to use, e.g., "EPSG:3857". Defaults to None.

None
overlay_data int, str, list

Administrative boundary to be drawn on the timelapse. Defaults to None.

None
overlay_color str

Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.

'#000000'
overlay_width int

Width of the overlay. Defaults to 1.

1
overlay_opacity float

Opacity of the overlay. Defaults to 1.0.

1.0
mp4 bool

Whether to convert the GIF to MP4. Defaults to False.

False
fading int | bool

If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).

False

Exceptions:

Type Description
Exception

Raise exception.

Source code in geemap/timelapse.py
def goes_fire_timelapse(
    roi=None,
    out_gif=None,
    start_date="2020-09-05T15:00",
    end_date="2020-09-06T02:00",
    data="GOES-17",
    scan="full_disk",
    dimensions=768,
    framesPerSecond=10,
    date_format="YYYY-MM-dd HH:mm",
    xy=("3%", "3%"),
    text_sequence=None,
    font_type="arial.ttf",
    font_size=20,
    font_color="#ffffff",
    add_progress_bar=True,
    progress_bar_color="white",
    progress_bar_height=5,
    loop=0,
    crs=None,
    overlay_data=None,
    overlay_color="#000000",
    overlay_width=1,
    overlay_opacity=1.0,
    mp4=False,
    fading=False,
    **kwargs,
):
    """Create a timelapse of GOES fire data. The code is adapted from Justin Braaten's code: https://code.earthengine.google.com/8a083a7fb13b95ad4ba148ed9b65475e.
    Credits to Justin Braaten. See also https://jstnbraaten.medium.com/goes-in-earth-engine-53fbc8783c16

    Args:
        out_gif (str): The file path to save the gif.
        start_date (str, optional): The start date of the time series. Defaults to "2021-10-24T14:00:00".
        end_date (str, optional): The end date of the time series. Defaults to "2021-10-25T01:00:00".
        data (str, optional): The GOES satellite data to use. Defaults to "GOES-17".
        scan (str, optional): The GOES scan to use. Defaults to "full_disk".
        region (ee.Geometry, optional): The region of interest. Defaults to None.
        dimensions (int, optional): a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.
        frames_per_second (int, optional): Animation speed. Defaults to 10.
        date_format (str, optional): The date format to use. Defaults to "YYYY-MM-dd HH:mm".
        xy (tuple, optional): Top left corner of the text. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        text_sequence (int, str, list, optional): Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.
        font_type (str, optional): Font type. Defaults to "arial.ttf".
        font_size (int, optional): Font size. Defaults to 20.
        font_color (str, optional): Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff').  Defaults to '#000000'.
        add_progress_bar (bool, optional): Whether to add a progress bar at the bottom of the GIF. Defaults to True.
        progress_bar_color (str, optional): Color for the progress bar. Defaults to 'white'.
        progress_bar_height (int, optional): Height of the progress bar. Defaults to 5.
        loop (int, optional): controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.
        crs (str, optional): The coordinate reference system to use, e.g., "EPSG:3857". Defaults to None.
        overlay_data (int, str, list, optional): Administrative boundary to be drawn on the timelapse. Defaults to None.
        overlay_color (str, optional): Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.
        overlay_width (int, optional): Width of the overlay. Defaults to 1.
        overlay_opacity (float, optional): Opacity of the overlay. Defaults to 1.0.
        mp4 (bool, optional): Whether to convert the GIF to MP4. Defaults to False.
        fading (int | bool, optional): If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).

    Raises:
        Exception: Raise exception.
    """

    try:
        if "region" in kwargs:
            roi = kwargs["region"]

        if out_gif is None:
            out_gif = os.path.abspath(f"goes_fire_{random_string(3)}.gif")

        if roi is None:
            roi = ee.Geometry.BBox(-123.17, 36.56, -118.22, 40.03)

        col = goes_fire_timeseries(start_date, end_date, data, scan, roi)
        if overlay_data is not None:
            col = add_overlay(
                col, overlay_data, overlay_color, overlay_width, overlay_opacity
            )

        # visParams = {
        #     "bands": ["CMI_C02", "CMI_GREEN", "CMI_C01"],
        #     "min": 0,
        #     "max": 0.8,
        #     "dimensions": dimensions,
        #     "framesPerSecond": framesPerSecond,
        #     "region": region,
        #     "crs": col.first().projection(),
        # }

        if crs is None:
            crs = col.first().projection()

        cmiFdcVisParams = {
            "dimensions": dimensions,
            "framesPerSecond": framesPerSecond,
            "region": roi,
            "crs": crs,
        }

        if text_sequence is None:
            text_sequence = image_dates(col, date_format=date_format).getInfo()

        download_ee_video(col, cmiFdcVisParams, out_gif)

        if os.path.exists(out_gif):
            add_text_to_gif(
                out_gif,
                out_gif,
                xy,
                text_sequence,
                font_type,
                font_size,
                font_color,
                add_progress_bar,
                progress_bar_color,
                progress_bar_height,
                duration=1000 / framesPerSecond,
                loop=loop,
            )

            try:
                reduce_gif_size(out_gif)
                if isinstance(fading, bool):
                    fading = int(fading)
                if fading > 0:
                    gif_fading(out_gif, out_gif, duration=fading, verbose=False)

            except Exception as _:
                pass

            if mp4:
                out_mp4 = out_gif.replace(".gif", ".mp4")
                gif_to_mp4(out_gif, out_mp4)

            return out_gif

    except Exception as e:
        raise Exception(e)

goes_fire_timeseries(start_date='2020-09-05T15:00', end_date='2020-09-06T02:00', data='GOES-17', scan='full_disk', region=None, merge=True)

Create a time series of GOES Fire data. The code is adapted from Justin Braaten's code: https://code.earthengine.google.com/8a083a7fb13b95ad4ba148ed9b65475e. Credits to Justin Braaten. See also https://jstnbraaten.medium.com/goes-in-earth-engine-53fbc8783c16

Parameters:

Name Type Description Default
start_date str

The start date of the time series. Defaults to "2020-09-05T15:00".

'2020-09-05T15:00'
end_date str

The end date of the time series. Defaults to "2020-09-06T02:00".

'2020-09-06T02:00'
data str

The GOES satellite data to use. Defaults to "GOES-17".

'GOES-17'
scan str

The GOES scan to use. Defaults to "full_disk".

'full_disk'
region ee.Geometry

The region of interest. Defaults to None.

None
merge bool

Whether to merge the fire timeseries with GOES CMI timeseries. Defaults to True.

True

Exceptions:

Type Description
ValueError

The data must be either GOES-16 or GOES-17.

ValueError

The scan must be either full_disk or conus.

Returns:

Type Description
ee.ImageCollection

GOES fire timeseries.

Source code in geemap/timelapse.py
def goes_fire_timeseries(
    start_date="2020-09-05T15:00",
    end_date="2020-09-06T02:00",
    data="GOES-17",
    scan="full_disk",
    region=None,
    merge=True,
):
    """Create a time series of GOES Fire data. The code is adapted from Justin Braaten's code: https://code.earthengine.google.com/8a083a7fb13b95ad4ba148ed9b65475e.
    Credits to Justin Braaten. See also https://jstnbraaten.medium.com/goes-in-earth-engine-53fbc8783c16

    Args:
        start_date (str, optional): The start date of the time series. Defaults to "2020-09-05T15:00".
        end_date (str, optional): The end date of the time series. Defaults to "2020-09-06T02:00".
        data (str, optional): The GOES satellite data to use. Defaults to "GOES-17".
        scan (str, optional): The GOES scan to use. Defaults to "full_disk".
        region (ee.Geometry, optional): The region of interest. Defaults to None.
        merge (bool, optional): Whether to merge the fire timeseries with GOES CMI timeseries. Defaults to True.

    Raises:
        ValueError: The data must be either GOES-16 or GOES-17.
        ValueError: The scan must be either full_disk or conus.

    Returns:
        ee.ImageCollection: GOES fire timeseries.
    """

    if data not in ["GOES-16", "GOES-17"]:
        raise ValueError("The data must be either GOES-16 or GOES-17.")

    if scan.lower() not in ["full_disk", "conus"]:
        raise ValueError("The scan must be either full_disk or conus.")

    scan_types = {
        "full_disk": "FDCF",
        "conus": "FDCC",
    }

    if region is None:
        region = ee.Geometry.BBox(-123.17, 36.56, -118.22, 40.03)

    # Get the fire/hotspot characterization dataset.
    col = ee.ImageCollection(f"NOAA/GOES/{data[-2:]}/{scan_types[scan.lower()]}")
    fdcCol = col.filterDate(start_date, end_date)

    # Identify fire-detected pixels of medium to high confidence.
    fireMaskCodes = [10, 30, 11, 31, 12, 32, 13, 33, 14, 34, 15, 35]
    confVals = [1.0, 1.0, 0.9, 0.9, 0.8, 0.8, 0.5, 0.5, 0.3, 0.3, 0.1, 0.1]
    defaultConfVal = 0

    def fdcVis(img):
        confImg = img.remap(fireMaskCodes, confVals, defaultConfVal, "Mask")
        return (
            confImg.gte(0.3)
            .selfMask()
            .set("system:time_start", img.get("system:time_start"))
        )

    fdcVisCol = fdcCol.map(fdcVis)
    if not merge:
        return fdcVisCol
    else:
        geosVisCol = goes_timeseries(start_date, end_date, data, scan, region)
        # Join the fire collection to the CMI collection.
        joinFilter = ee.Filter.equals(
            **{"leftField": "system:time_start", "rightField": "system:time_start"}
        )
        joinedCol = ee.Join.saveFirst("match").apply(geosVisCol, fdcVisCol, joinFilter)

        def overlayVis(img):
            cmi = ee.Image(img).visualize(
                **{
                    "bands": ["CMI_C02", "CMI_GREEN", "CMI_C01"],
                    "min": 0,
                    "max": 0.8,
                    "gamma": 0.8,
                }
            )
            fdc = ee.Image(img.get("match")).visualize(
                **{"palette": ["ff5349"], "min": 0, "max": 1, "opacity": 0.7}
            )
            return cmi.blend(fdc).set("system:time_start", img.get("system:time_start"))

        cmiFdcVisCol = ee.ImageCollection(joinedCol.map(overlayVis))
        return cmiFdcVisCol

goes_timelapse(roi=None, out_gif=None, start_date='2021-10-24T14:00:00', end_date='2021-10-25T01:00:00', data='GOES-17', scan='full_disk', bands=['CMI_C02', 'CMI_GREEN', 'CMI_C01'], dimensions=768, framesPerSecond=10, date_format='YYYY-MM-dd HH:mm', xy=('3%', '3%'), text_sequence=None, font_type='arial.ttf', font_size=20, font_color='#ffffff', add_progress_bar=True, progress_bar_color='white', progress_bar_height=5, loop=0, crs=None, overlay_data=None, overlay_color='black', overlay_width=1, overlay_opacity=1.0, mp4=False, fading=False, **kwargs)

Create a timelapse of GOES data. The code is adapted from Justin Braaten's code: https://code.earthengine.google.com/57245f2d3d04233765c42fb5ef19c1f4. Credits to Justin Braaten. See also https://jstnbraaten.medium.com/goes-in-earth-engine-53fbc8783c16

Parameters:

Name Type Description Default
roi ee.Geometry

The region of interest. Defaults to None.

None
out_gif str

The file path to save the gif.

None
start_date str

The start date of the time series. Defaults to "2021-10-24T14:00:00".

'2021-10-24T14:00:00'
end_date str

The end date of the time series. Defaults to "2021-10-25T01:00:00".

'2021-10-25T01:00:00'
data str

The GOES satellite data to use. Defaults to "GOES-17".

'GOES-17'
scan str

The GOES scan to use. Defaults to "full_disk".

'full_disk'
bands list

The bands to visualize. Defaults to ["CMI_C02", "CMI_GREEN", "CMI_C01"].

['CMI_C02', 'CMI_GREEN', 'CMI_C01']
dimensions int

a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.

768
frames_per_second int

Animation speed. Defaults to 10.

required
date_format str

The date format to use. Defaults to "YYYY-MM-dd HH:mm".

'YYYY-MM-dd HH:mm'
xy tuple

Top left corner of the text. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

('3%', '3%')
text_sequence int, str, list

Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.

None
font_type str

Font type. Defaults to "arial.ttf".

'arial.ttf'
font_size int

Font size. Defaults to 20.

20
font_color str

Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to '#000000'.

'#ffffff'
add_progress_bar bool

Whether to add a progress bar at the bottom of the GIF. Defaults to True.

True
progress_bar_color str

Color for the progress bar. Defaults to 'white'.

'white'
progress_bar_height int

Height of the progress bar. Defaults to 5. loop (int, optional): controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.

5
crs str

The coordinate reference system to use, e.g., "EPSG:3857". Defaults to None.

None
overlay_data int, str, list

Administrative boundary to be drawn on the timelapse. Defaults to None.

None
overlay_color str

Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.

'black'
overlay_width int

Line width of the overlay. Defaults to 1.

1
overlay_opacity float

Opacity of the overlay. Defaults to 1.0.

1.0
mp4 bool

Whether to save the animation as an mp4 file. Defaults to False.

False
fading int | bool

If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).

False

Exceptions:

Type Description
Exception

Raise exception.

Source code in geemap/timelapse.py
def goes_timelapse(
    roi=None,
    out_gif=None,
    start_date="2021-10-24T14:00:00",
    end_date="2021-10-25T01:00:00",
    data="GOES-17",
    scan="full_disk",
    bands=["CMI_C02", "CMI_GREEN", "CMI_C01"],
    dimensions=768,
    framesPerSecond=10,
    date_format="YYYY-MM-dd HH:mm",
    xy=("3%", "3%"),
    text_sequence=None,
    font_type="arial.ttf",
    font_size=20,
    font_color="#ffffff",
    add_progress_bar=True,
    progress_bar_color="white",
    progress_bar_height=5,
    loop=0,
    crs=None,
    overlay_data=None,
    overlay_color="black",
    overlay_width=1,
    overlay_opacity=1.0,
    mp4=False,
    fading=False,
    **kwargs,
):
    """Create a timelapse of GOES data. The code is adapted from Justin Braaten's code: https://code.earthengine.google.com/57245f2d3d04233765c42fb5ef19c1f4.
    Credits to Justin Braaten. See also https://jstnbraaten.medium.com/goes-in-earth-engine-53fbc8783c16

    Args:
        roi (ee.Geometry, optional): The region of interest. Defaults to None.
        out_gif (str): The file path to save the gif.
        start_date (str, optional): The start date of the time series. Defaults to "2021-10-24T14:00:00".
        end_date (str, optional): The end date of the time series. Defaults to "2021-10-25T01:00:00".
        data (str, optional): The GOES satellite data to use. Defaults to "GOES-17".
        scan (str, optional): The GOES scan to use. Defaults to "full_disk".
        bands (list, optional): The bands to visualize. Defaults to ["CMI_C02", "CMI_GREEN", "CMI_C01"].
        dimensions (int, optional): a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.
        frames_per_second (int, optional): Animation speed. Defaults to 10.
        date_format (str, optional): The date format to use. Defaults to "YYYY-MM-dd HH:mm".
        xy (tuple, optional): Top left corner of the text. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        text_sequence (int, str, list, optional): Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.
        font_type (str, optional): Font type. Defaults to "arial.ttf".
        font_size (int, optional): Font size. Defaults to 20.
        font_color (str, optional): Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff').  Defaults to '#000000'.
        add_progress_bar (bool, optional): Whether to add a progress bar at the bottom of the GIF. Defaults to True.
        progress_bar_color (str, optional): Color for the progress bar. Defaults to 'white'.
        progress_bar_height (int, optional): Height of the progress bar. Defaults to 5.        loop (int, optional): controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.
        crs (str, optional): The coordinate reference system to use, e.g., "EPSG:3857". Defaults to None.
        overlay_data (int, str, list, optional): Administrative boundary to be drawn on the timelapse. Defaults to None.
        overlay_color (str, optional): Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.
        overlay_width (int, optional): Line width of the overlay. Defaults to 1.
        overlay_opacity (float, optional): Opacity of the overlay. Defaults to 1.0.
        mp4 (bool, optional): Whether to save the animation as an mp4 file. Defaults to False.
        fading (int | bool, optional): If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).
    Raises:
        Exception: Raise exception.
    """

    try:
        if "region" in kwargs:
            roi = kwargs["region"]

        if out_gif is None:
            out_gif = os.path.abspath(f"goes_{random_string(3)}.gif")

        visParams = {
            "bands": bands,
            "min": 0,
            "max": 0.8,
        }
        col = goes_timeseries(start_date, end_date, data, scan, roi)
        col = col.select(bands).map(
            lambda img: img.visualize(**visParams).set(
                {
                    "system:time_start": img.get("system:time_start"),
                }
            )
        )
        if overlay_data is not None:
            col = add_overlay(
                col, overlay_data, overlay_color, overlay_width, overlay_opacity
            )

        if roi is None:
            roi = ee.Geometry.Polygon(
                [
                    [
                        [-159.5954, 60.4088],
                        [-159.5954, 24.5178],
                        [-114.2438, 24.5178],
                        [-114.2438, 60.4088],
                    ]
                ],
                None,
                False,
            )

        if crs is None:
            crs = col.first().projection()

        videoParams = {
            "bands": ["vis-red", "vis-green", "vis-blue"],
            "min": 0,
            "max": 255,
            "dimensions": dimensions,
            "framesPerSecond": framesPerSecond,
            "region": roi,
            "crs": crs,
        }

        if text_sequence is None:
            text_sequence = image_dates(col, date_format=date_format).getInfo()

        download_ee_video(col, videoParams, out_gif)

        if os.path.exists(out_gif):
            add_text_to_gif(
                out_gif,
                out_gif,
                xy,
                text_sequence,
                font_type,
                font_size,
                font_color,
                add_progress_bar,
                progress_bar_color,
                progress_bar_height,
                duration=1000 / framesPerSecond,
                loop=loop,
            )

            try:
                reduce_gif_size(out_gif)

                if isinstance(fading, bool):
                    fading = int(fading)
                if fading > 0:
                    gif_fading(out_gif, out_gif, duration=fading, verbose=False)

            except Exception as _:
                pass

            if mp4:
                out_mp4 = out_gif.replace(".gif", ".mp4")
                gif_to_mp4(out_gif, out_mp4)

            return out_gif

    except Exception as e:
        raise Exception(e)

goes_timeseries(start_date='2021-10-24T14:00:00', end_date='2021-10-25T01:00:00', data='GOES-17', scan='full_disk', region=None, show_night=[False, 'a_mode'])

Create a time series of GOES data. The code is adapted from Justin Braaten's code: https://code.earthengine.google.com/57245f2d3d04233765c42fb5ef19c1f4. Credits to Justin Braaten. See also https://jstnbraaten.medium.com/goes-in-earth-engine-53fbc8783c16

Parameters:

Name Type Description Default
start_date str

The start date of the time series. Defaults to "2021-10-24T14:00:00".

'2021-10-24T14:00:00'
end_date str

The end date of the time series. Defaults to "2021-10-25T01:00:00".

'2021-10-25T01:00:00'
data str

The GOES satellite data to use. Defaults to "GOES-17".

'GOES-17'
scan str

The GOES scan to use. Defaults to "full_disk".

'full_disk'
region ee.Geometry

The region of interest. Defaults to None.

None
show_night list

Show the clouds at night through [True, "a_mode"] o [True, "b_mode"]. Defaults to [False, "a_mode"]

[False, 'a_mode']

Exceptions:

Type Description
ValueError

The data must be either GOES-16 or GOES-17.

ValueError

The scan must be either full_disk, conus, or mesoscale.

Returns:

Type Description
ee.ImageCollection

GOES timeseries.

Source code in geemap/timelapse.py
def goes_timeseries(
    start_date="2021-10-24T14:00:00",
    end_date="2021-10-25T01:00:00",
    data="GOES-17",
    scan="full_disk",
    region=None,
    show_night=[False, "a_mode"],
):
    """Create a time series of GOES data. The code is adapted from Justin Braaten's code: https://code.earthengine.google.com/57245f2d3d04233765c42fb5ef19c1f4.
    Credits to Justin Braaten. See also https://jstnbraaten.medium.com/goes-in-earth-engine-53fbc8783c16

    Args:
        start_date (str, optional): The start date of the time series. Defaults to "2021-10-24T14:00:00".
        end_date (str, optional): The end date of the time series. Defaults to "2021-10-25T01:00:00".
        data (str, optional): The GOES satellite data to use. Defaults to "GOES-17".
        scan (str, optional): The GOES scan to use. Defaults to "full_disk".
        region (ee.Geometry, optional): The region of interest. Defaults to None.
        show_night (list, optional): Show the clouds at night through [True, "a_mode"] o [True, "b_mode"].  Defaults to [False, "a_mode"]
    Raises:
        ValueError: The data must be either GOES-16 or GOES-17.
        ValueError: The scan must be either full_disk, conus, or mesoscale.

    Returns:
        ee.ImageCollection: GOES timeseries.
    """

    if data not in ["GOES-16", "GOES-17"]:
        raise ValueError("The data must be either GOES-16 or GOES-17.")

    if scan.lower() not in ["full_disk", "conus", "mesoscale"]:
        raise ValueError("The scan must be either full_disk, conus, or mesoscale.")

    scan_types = {
        "full_disk": "MCMIPF",
        "conus": "MCMIPC",
        "mesoscale": "MCMIPM",
    }

    col = ee.ImageCollection(f"NOAA/GOES/{data[-2:]}/{scan_types[scan.lower()]}")

    if region is None:
        region = ee.Geometry.Polygon(
            [
                [
                    [-159.5954379282731, 60.40883060191719],
                    [-159.5954379282731, 24.517881970830725],
                    [-114.2438754282731, 24.517881970830725],
                    [-114.2438754282731, 60.40883060191719],
                ]
            ],
            None,
            False,
        )

    # Applies scaling factors.
    def applyScaleAndOffset(img):
        def getFactorImg(factorNames):
            factorList = img.toDictionary().select(factorNames).values()
            return ee.Image.constant(factorList)

        scaleImg = getFactorImg(["CMI_C.._scale"])
        offsetImg = getFactorImg(["CMI_C.._offset"])
        scaled = img.select("CMI_C..").multiply(scaleImg).add(offsetImg)
        return img.addBands(**{"srcImg": scaled, "overwrite": True})

    # Adds a synthetic green band.
    def addGreenBand(img):
        green = img.expression(
            "CMI_GREEN = 0.45 * red + 0.10 * nir + 0.45 * blue",
            {
                "blue": img.select("CMI_C01"),
                "red": img.select("CMI_C02"),
                "nir": img.select("CMI_C03"),
            },
        )
        return img.addBands(green)

    # Show at clouds at night (a-mode)
    def showNighta(img):
        # Make normalized infrared
        IR_n = img.select("CMI_C13").unitScale(ee.Number(90), ee.Number(313))
        IR_n = IR_n.expression(
            "ir_p = (1 -IR_n)/1.4",
            {
                "IR_n": IR_n.select("CMI_C13"),
            },
        )

        # Add infrared to rgb bands
        R_ir = img.select("CMI_C02").max(IR_n)
        G_ir = img.select("CMI_GREEN").max(IR_n)
        B_ir = img.select("CMI_C01").max(IR_n)

        return img.addBands([R_ir, G_ir, B_ir], overwrite=True)

    # Show at clouds at night (b-mode)
    def showNightb(img):
        night = img.select("CMI_C03").unitScale(0, 0.016).subtract(1).multiply(-1)

        cmi11 = img.select("CMI_C11").unitScale(100, 310)
        cmi13 = img.select("CMI_C13").unitScale(100, 300)
        cmi15 = img.select("CMI_C15").unitScale(100, 310)
        iNight = cmi15.addBands([cmi13, cmi11]).clamp(0, 1).subtract(1).multiply(-1)

        iRGBNight = iNight.visualize(**{"min": 0, "max": 1, "gamma": 1.4}).updateMask(
            night
        )

        iRGB = img.visualize(
            **{
                "bands": ["CMI_C02", "CMI_C03", "CMI_C01"],
                "min": 0.15,
                "max": 1,
                "gamma": 1.4,
            }
        )
        return iRGB.blend(iRGBNight).set(
            "system:time_start", img.get("system:time_start")
        )

    # Scales select bands for visualization.
    def scaleForVis(img):
        return (
            img.select(["CMI_C01", "CMI_GREEN", "CMI_C02", "CMI_C03", "CMI_C05"])
            .resample("bicubic")
            .log10()
            .interpolate([-1.6, 0.176], [0, 1], "clamp")
            .unmask(0)
            .set("system:time_start", img.get("system:time_start"))
        )

    # Wraps previous functions.
    def processForVis(img):
        if show_night[0]:
            if show_night[1] == "a_mode":
                return scaleForVis(showNighta(addGreenBand(applyScaleAndOffset(img))))

            else:
                return showNightb(applyScaleAndOffset(img))

        else:
            return scaleForVis(addGreenBand(applyScaleAndOffset(img)))

    return col.filterDate(start_date, end_date).filterBounds(region).map(processForVis)

landsat_timelapse(roi=None, out_gif=None, start_year=1984, end_year=None, start_date='06-10', end_date='09-20', bands=['NIR', 'Red', 'Green'], vis_params=None, dimensions=768, frames_per_second=5, crs='EPSG:3857', apply_fmask=True, nd_bands=None, nd_threshold=0, nd_palette=['black', 'blue'], overlay_data=None, overlay_color='black', overlay_width=1, overlay_opacity=1.0, frequency='year', date_format=None, title=None, title_xy=('2%', '90%'), add_text=True, text_xy=('2%', '2%'), text_sequence=None, font_type='arial.ttf', font_size=20, font_color='white', add_progress_bar=True, progress_bar_color='white', progress_bar_height=5, loop=0, mp4=False, fading=False, step=1)

Generates a Landsat timelapse GIF image. This function is adapted from https://emaprlab.users.earthengine.app/view/lt-gee-time-series-animator. A huge thank you to Justin Braaten for sharing his fantastic work.

Parameters:

Name Type Description Default
roi object

Region of interest to create the timelapse. Defaults to None.

None
out_gif str

File path to the output animated GIF. Defaults to None.

None
start_year int

Starting year for the timelapse. Defaults to 1984.

1984
end_year int

Ending year for the timelapse. Defaults to None, which will use the current year.

None
start_date str

Starting date (month-day) each year for filtering ImageCollection. Defaults to '06-10'.

'06-10'
end_date str

Ending date (month-day) each year for filtering ImageCollection. Defaults to '09-20'.

'09-20'
bands list

Three bands selected from ['Blue', 'Green', 'Red', 'NIR', 'SWIR1', 'SWIR2', 'pixel_qa']. Defaults to ['NIR', 'Red', 'Green'].

['NIR', 'Red', 'Green']
vis_params dict

Visualization parameters. Defaults to None.

None
dimensions int

a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.

768
frames_per_second int

Animation speed. Defaults to 5.

5
crs str

The coordinate reference system to use. Defaults to "EPSG:3857".

'EPSG:3857'
apply_fmask bool

Whether to apply Fmask (Function of mask) for automated clouds, cloud shadows, snow, and water masking.

True
nd_bands list

A list of names specifying the bands to use, e.g., ['Green', 'SWIR1']. The normalized difference is computed as (first − second) / (first + second). Note that negative input values are forced to 0 so that the result is confined to the range (-1, 1).

None
nd_threshold float

The threshold for extracting pixels from the normalized difference band.

0
nd_palette list

The color palette to use for displaying the normalized difference band.

['black', 'blue']
overlay_data int, str, list

Administrative boundary to be drawn on the timelapse. Defaults to None.

None
overlay_color str

Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.

'black'
overlay_width int

Line width of the overlay. Defaults to 1.

1
overlay_opacity float

Opacity of the overlay. Defaults to 1.0.

1.0
frequency str

Frequency of the timelapse. Defaults to 'year'.

'year'
date_format str

Date format for the timelapse. Defaults to None.

None
title str

The title of the timelapse. Defaults to None.

None
title_xy tuple

Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

('2%', '90%')
add_text bool

Whether to add animated text to the timelapse. Defaults to True.

True
title_xy tuple

Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

('2%', '90%')
text_sequence int, str, list

Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.

None
font_type str

Font type. Defaults to "arial.ttf".

'arial.ttf'
font_size int

Font size. Defaults to 20.

20
font_color str

Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to '#000000'.

'white'
add_progress_bar bool

Whether to add a progress bar at the bottom of the GIF. Defaults to True.

True
progress_bar_color str

Color for the progress bar. Defaults to 'white'.

'white'
progress_bar_height int

Height of the progress bar. Defaults to 5.

5
loop int

Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.

0
mp4 bool

Whether to convert the GIF to MP4. Defaults to False.

False
fading int | bool

If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).

False
step int

Step size for the timelapse. Defaults to 1.

1

Returns:

Type Description
str

File path to the output GIF image.

Source code in geemap/timelapse.py
def landsat_timelapse(
    roi=None,
    out_gif=None,
    start_year=1984,
    end_year=None,
    start_date="06-10",
    end_date="09-20",
    bands=["NIR", "Red", "Green"],
    vis_params=None,
    dimensions=768,
    frames_per_second=5,
    crs="EPSG:3857",
    apply_fmask=True,
    nd_bands=None,
    nd_threshold=0,
    nd_palette=["black", "blue"],
    overlay_data=None,
    overlay_color="black",
    overlay_width=1,
    overlay_opacity=1.0,
    frequency="year",
    date_format=None,
    title=None,
    title_xy=("2%", "90%"),
    add_text=True,
    text_xy=("2%", "2%"),
    text_sequence=None,
    font_type="arial.ttf",
    font_size=20,
    font_color="white",
    add_progress_bar=True,
    progress_bar_color="white",
    progress_bar_height=5,
    loop=0,
    mp4=False,
    fading=False,
    step=1,
):
    """Generates a Landsat timelapse GIF image. This function is adapted from https://emaprlab.users.earthengine.app/view/lt-gee-time-series-animator. A huge thank you to Justin Braaten for sharing his fantastic work.

    Args:
        roi (object, optional): Region of interest to create the timelapse. Defaults to None.
        out_gif (str, optional): File path to the output animated GIF. Defaults to None.
        start_year (int, optional): Starting year for the timelapse. Defaults to 1984.
        end_year (int, optional): Ending year for the timelapse. Defaults to None, which will use the current year.
        start_date (str, optional): Starting date (month-day) each year for filtering ImageCollection. Defaults to '06-10'.
        end_date (str, optional): Ending date (month-day) each year for filtering ImageCollection. Defaults to '09-20'.
        bands (list, optional): Three bands selected from ['Blue', 'Green', 'Red', 'NIR', 'SWIR1', 'SWIR2', 'pixel_qa']. Defaults to ['NIR', 'Red', 'Green'].
        vis_params (dict, optional): Visualization parameters. Defaults to None.
        dimensions (int, optional): a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.
        frames_per_second (int, optional): Animation speed. Defaults to 5.
        crs (str, optional): The coordinate reference system to use. Defaults to "EPSG:3857".
        apply_fmask (bool, optional): Whether to apply Fmask (Function of mask) for automated clouds, cloud shadows, snow, and water masking.
        nd_bands (list, optional): A list of names specifying the bands to use, e.g., ['Green', 'SWIR1']. The normalized difference is computed as (first − second) / (first + second). Note that negative input values are forced to 0 so that the result is confined to the range (-1, 1).
        nd_threshold (float, optional): The threshold for extracting pixels from the normalized difference band.
        nd_palette (list, optional): The color palette to use for displaying the normalized difference band.
        overlay_data (int, str, list, optional): Administrative boundary to be drawn on the timelapse. Defaults to None.
        overlay_color (str, optional): Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.
        overlay_width (int, optional): Line width of the overlay. Defaults to 1.
        overlay_opacity (float, optional): Opacity of the overlay. Defaults to 1.0.
        frequency (str, optional): Frequency of the timelapse. Defaults to 'year'.
        date_format (str, optional): Date format for the timelapse. Defaults to None.
        title (str, optional): The title of the timelapse. Defaults to None.
        title_xy (tuple, optional): Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        add_text (bool, optional): Whether to add animated text to the timelapse. Defaults to True.
        title_xy (tuple, optional): Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        text_sequence (int, str, list, optional): Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.
        font_type (str, optional): Font type. Defaults to "arial.ttf".
        font_size (int, optional): Font size. Defaults to 20.
        font_color (str, optional): Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff').  Defaults to '#000000'.
        add_progress_bar (bool, optional): Whether to add a progress bar at the bottom of the GIF. Defaults to True.
        progress_bar_color (str, optional): Color for the progress bar. Defaults to 'white'.
        progress_bar_height (int, optional): Height of the progress bar. Defaults to 5.
        loop (int, optional): Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.
        mp4 (bool, optional): Whether to convert the GIF to MP4. Defaults to False.
        fading (int | bool, optional): If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).
        step (int, optional): Step size for the timelapse. Defaults to 1.

    Returns:
        str: File path to the output GIF image.
    """

    if roi is None:
        roi = ee.Geometry.Polygon(
            [
                [
                    [-115.471773, 35.892718],
                    [-115.471773, 36.409454],
                    [-114.271283, 36.409454],
                    [-114.271283, 35.892718],
                    [-115.471773, 35.892718],
                ]
            ],
            None,
            False,
        )
    elif isinstance(roi, ee.Feature) or isinstance(roi, ee.FeatureCollection):
        roi = roi.geometry()
    elif isinstance(roi, ee.Geometry):
        pass
    else:
        raise ValueError("The provided roi is invalid. It must be an ee.Geometry")

    if out_gif is None:
        out_gif = temp_file_path(".gif")
    elif not out_gif.endswith(".gif"):
        raise ValueError("The output file must end with .gif")
    else:
        out_gif = os.path.abspath(out_gif)
    out_dir = os.path.dirname(out_gif)

    if not os.path.exists(out_dir):
        os.makedirs(out_dir)

    if end_year is None:
        end_year = get_current_year()

    allowed_bands = ["Blue", "Green", "Red", "NIR", "SWIR1", "SWIR2", "pixel_qa"]

    if len(bands) == 3 and all(x in allowed_bands for x in bands):
        pass
    else:
        raise Exception(
            "You can only select 3 bands from the following: {}".format(
                ", ".join(allowed_bands)
            )
        )

    if nd_bands is not None:
        if len(nd_bands) == 2 and all(x in allowed_bands[:-1] for x in nd_bands):
            pass
        else:
            raise Exception(
                "You can only select two bands from the following: {}".format(
                    ", ".join(allowed_bands[:-1])
                )
            )

    try:
        if vis_params is None:
            vis_params = {}
            vis_params["bands"] = bands
            vis_params["min"] = 0
            vis_params["max"] = 0.4
            vis_params["gamma"] = [1, 1, 1]
        raw_col = landsat_timeseries(
            roi,
            start_year,
            end_year,
            start_date,
            end_date,
            apply_fmask,
            frequency,
            date_format,
            step,
        )

        col = raw_col.select(bands).map(
            lambda img: img.visualize(**vis_params).set(
                {
                    "system:time_start": img.get("system:time_start"),
                    "system:date": img.get("system:date"),
                }
            )
        )
        if overlay_data is not None:
            col = add_overlay(
                col, overlay_data, overlay_color, overlay_width, overlay_opacity
            )

        if (
            isinstance(dimensions, int)
            and dimensions > 768
            or isinstance(dimensions, str)
            and any(dim > 768 for dim in list(map(int, dimensions.split("x"))))
        ):
            count = col.size().getInfo()
            basename = os.path.basename(out_gif)[:-4]
            names = [
                os.path.join(
                    out_dir, f"{basename}_{str(i+1).zfill(int(len(str(count))))}.jpg"
                )
                for i in range(count)
            ]
            get_image_collection_thumbnails(
                col,
                out_dir,
                vis_params={
                    "min": 0,
                    "max": 255,
                    "bands": ["vis-red", "vis-green", "vis-blue"],
                },
                dimensions=dimensions,
                names=names,
            )
            make_gif(
                names,
                out_gif,
                fps=frames_per_second,
                loop=loop,
                mp4=False,
                clean_up=True,
            )

        else:
            video_args = vis_params.copy()
            video_args["dimensions"] = dimensions
            video_args["region"] = roi
            video_args["framesPerSecond"] = frames_per_second
            video_args["crs"] = crs
            video_args["bands"] = ["vis-red", "vis-green", "vis-blue"]
            video_args["min"] = 0
            video_args["max"] = 255

            download_ee_video(col, video_args, out_gif)

        if os.path.exists(out_gif):
            if title is not None and isinstance(title, str):
                add_text_to_gif(
                    out_gif,
                    out_gif,
                    xy=title_xy,
                    text_sequence=title,
                    font_type=font_type,
                    font_size=font_size,
                    font_color=font_color,
                    add_progress_bar=add_progress_bar,
                    progress_bar_color=progress_bar_color,
                    progress_bar_height=progress_bar_height,
                    duration=1000 / frames_per_second,
                    loop=loop,
                )
            if add_text:
                if text_sequence is None:
                    text_sequence = col.aggregate_array("system:date").getInfo()
                add_text_to_gif(
                    out_gif,
                    out_gif,
                    xy=text_xy,
                    text_sequence=text_sequence,
                    font_type=font_type,
                    font_size=font_size,
                    font_color=font_color,
                    add_progress_bar=add_progress_bar,
                    progress_bar_color=progress_bar_color,
                    progress_bar_height=progress_bar_height,
                    duration=1000 / frames_per_second,
                    loop=loop,
                )

        if nd_bands is not None:
            nd_images = landsat_ts_norm_diff(
                raw_col, bands=nd_bands, threshold=nd_threshold
            )
            out_nd_gif = out_gif.replace(".gif", "_nd.gif")
            landsat_ts_norm_diff_gif(
                nd_images,
                out_gif=out_nd_gif,
                vis_params=None,
                palette=nd_palette,
                dimensions=dimensions,
                frames_per_second=frames_per_second,
            )

        if os.path.exists(out_gif):
            reduce_gif_size(out_gif)

        if isinstance(fading, bool):
            fading = int(fading)
        if fading > 0:
            gif_fading(out_gif, out_gif, duration=fading, verbose=False)

        if mp4:
            out_mp4 = out_gif.replace(".gif", ".mp4")
            gif_to_mp4(out_gif, out_mp4)

        return out_gif

    except Exception as e:
        raise Exception(e)

landsat_timelapse_legacy(roi=None, out_gif=None, start_year=1984, end_year=None, start_date='06-10', end_date='09-20', bands=['NIR', 'Red', 'Green'], vis_params=None, dimensions=768, frames_per_second=5, crs='EPSG:3857', apply_fmask=True, nd_bands=None, nd_threshold=0, nd_palette=['black', 'blue'], overlay_data=None, overlay_color='black', overlay_width=1, overlay_opacity=1.0, frequency='year', date_format=None, title=None, title_xy=('2%', '90%'), add_text=True, text_xy=('2%', '2%'), text_sequence=None, font_type='arial.ttf', font_size=20, font_color='white', add_progress_bar=True, progress_bar_color='white', progress_bar_height=5, loop=0, mp4=False, fading=False)

Generates a Landsat timelapse GIF image. This function is adapted from https://emaprlab.users.earthengine.app/view/lt-gee-time-series-animator. A huge thank you to Justin Braaten for sharing his fantastic work.

Parameters:

Name Type Description Default
roi object

Region of interest to create the timelapse. Defaults to None.

None
out_gif str

File path to the output animated GIF. Defaults to None.

None
start_year int

Starting year for the timelapse. Defaults to 1984.

1984
end_year int

Ending year for the timelapse. Defaults to None, which means the current year.

None
start_date str

Starting date (month-day) each year for filtering ImageCollection. Defaults to '06-10'.

'06-10'
end_date str

Ending date (month-day) each year for filtering ImageCollection. Defaults to '09-20'.

'09-20'
bands list

Three bands selected from ['Blue', 'Green', 'Red', 'NIR', 'SWIR1', 'SWIR2', 'pixel_qa']. Defaults to ['NIR', 'Red', 'Green'].

['NIR', 'Red', 'Green']
vis_params dict

Visualization parameters. Defaults to None.

None
dimensions int

a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.

768
frames_per_second int

Animation speed. Defaults to 5.

5
crs str

The coordinate reference system to use. Defaults to "EPSG:3857".

'EPSG:3857'
apply_fmask bool

Whether to apply Fmask (Function of mask) for automated clouds, cloud shadows, snow, and water masking.

True
nd_bands list

A list of names specifying the bands to use, e.g., ['Green', 'SWIR1']. The normalized difference is computed as (first − second) / (first + second). Note that negative input values are forced to 0 so that the result is confined to the range (-1, 1).

None
nd_threshold float

The threshold for extracting pixels from the normalized difference band.

0
nd_palette list

The color palette to use for displaying the normalized difference band.

['black', 'blue']
overlay_data int, str, list

Administrative boundary to be drawn on the timelapse. Defaults to None.

None
overlay_color str

Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.

'black'
overlay_width int

Line width of the overlay. Defaults to 1.

1
overlay_opacity float

Opacity of the overlay. Defaults to 1.0.

1.0
frequency str

Frequency of the timelapse. Defaults to 'year'.

'year'
date_format str

Date format for the timelapse. Defaults to None.

None
title str

The title of the timelapse. Defaults to None.

None
title_xy tuple

Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

('2%', '90%')
add_text bool

Whether to add animated text to the timelapse. Defaults to True.

True
title_xy tuple

Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

('2%', '90%')
text_sequence int, str, list

Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.

None
font_type str

Font type. Defaults to "arial.ttf".

'arial.ttf'
font_size int

Font size. Defaults to 20.

20
font_color str

Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to '#000000'.

'white'
add_progress_bar bool

Whether to add a progress bar at the bottom of the GIF. Defaults to True.

True
progress_bar_color str

Color for the progress bar. Defaults to 'white'.

'white'
progress_bar_height int

Height of the progress bar. Defaults to 5.

5
loop int

Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.

0
mp4 bool

Whether to convert the GIF to MP4. Defaults to False.

False
fading int | bool

If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).

False

Returns:

Type Description
str

File path to the output GIF image.

Source code in geemap/timelapse.py
def landsat_timelapse_legacy(
    roi=None,
    out_gif=None,
    start_year=1984,
    end_year=None,
    start_date="06-10",
    end_date="09-20",
    bands=["NIR", "Red", "Green"],
    vis_params=None,
    dimensions=768,
    frames_per_second=5,
    crs="EPSG:3857",
    apply_fmask=True,
    nd_bands=None,
    nd_threshold=0,
    nd_palette=["black", "blue"],
    overlay_data=None,
    overlay_color="black",
    overlay_width=1,
    overlay_opacity=1.0,
    frequency="year",
    date_format=None,
    title=None,
    title_xy=("2%", "90%"),
    add_text=True,
    text_xy=("2%", "2%"),
    text_sequence=None,
    font_type="arial.ttf",
    font_size=20,
    font_color="white",
    add_progress_bar=True,
    progress_bar_color="white",
    progress_bar_height=5,
    loop=0,
    mp4=False,
    fading=False,
):
    """Generates a Landsat timelapse GIF image. This function is adapted from https://emaprlab.users.earthengine.app/view/lt-gee-time-series-animator. A huge thank you to Justin Braaten for sharing his fantastic work.

    Args:
        roi (object, optional): Region of interest to create the timelapse. Defaults to None.
        out_gif (str, optional): File path to the output animated GIF. Defaults to None.
        start_year (int, optional): Starting year for the timelapse. Defaults to 1984.
        end_year (int, optional): Ending year for the timelapse. Defaults to None, which means the current year.
        start_date (str, optional): Starting date (month-day) each year for filtering ImageCollection. Defaults to '06-10'.
        end_date (str, optional): Ending date (month-day) each year for filtering ImageCollection. Defaults to '09-20'.
        bands (list, optional): Three bands selected from ['Blue', 'Green', 'Red', 'NIR', 'SWIR1', 'SWIR2', 'pixel_qa']. Defaults to ['NIR', 'Red', 'Green'].
        vis_params (dict, optional): Visualization parameters. Defaults to None.
        dimensions (int, optional): a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.
        frames_per_second (int, optional): Animation speed. Defaults to 5.
        crs (str, optional): The coordinate reference system to use. Defaults to "EPSG:3857".
        apply_fmask (bool, optional): Whether to apply Fmask (Function of mask) for automated clouds, cloud shadows, snow, and water masking.
        nd_bands (list, optional): A list of names specifying the bands to use, e.g., ['Green', 'SWIR1']. The normalized difference is computed as (first − second) / (first + second). Note that negative input values are forced to 0 so that the result is confined to the range (-1, 1).
        nd_threshold (float, optional): The threshold for extracting pixels from the normalized difference band.
        nd_palette (list, optional): The color palette to use for displaying the normalized difference band.
        overlay_data (int, str, list, optional): Administrative boundary to be drawn on the timelapse. Defaults to None.
        overlay_color (str, optional): Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.
        overlay_width (int, optional): Line width of the overlay. Defaults to 1.
        overlay_opacity (float, optional): Opacity of the overlay. Defaults to 1.0.
        frequency (str, optional): Frequency of the timelapse. Defaults to 'year'.
        date_format (str, optional): Date format for the timelapse. Defaults to None.
        title (str, optional): The title of the timelapse. Defaults to None.
        title_xy (tuple, optional): Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        add_text (bool, optional): Whether to add animated text to the timelapse. Defaults to True.
        title_xy (tuple, optional): Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        text_sequence (int, str, list, optional): Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.
        font_type (str, optional): Font type. Defaults to "arial.ttf".
        font_size (int, optional): Font size. Defaults to 20.
        font_color (str, optional): Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff').  Defaults to '#000000'.
        add_progress_bar (bool, optional): Whether to add a progress bar at the bottom of the GIF. Defaults to True.
        progress_bar_color (str, optional): Color for the progress bar. Defaults to 'white'.
        progress_bar_height (int, optional): Height of the progress bar. Defaults to 5.
        loop (int, optional): Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.
        mp4 (bool, optional): Whether to convert the GIF to MP4. Defaults to False.
        fading (int | bool, optional): If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).

    Returns:
        str: File path to the output GIF image.
    """

    if end_year is None:
        end_year = get_current_year()

    if roi is None:
        roi = ee.Geometry.Polygon(
            [
                [
                    [-115.471773, 35.892718],
                    [-115.471773, 36.409454],
                    [-114.271283, 36.409454],
                    [-114.271283, 35.892718],
                    [-115.471773, 35.892718],
                ]
            ],
            None,
            False,
        )
    elif isinstance(roi, ee.Feature) or isinstance(roi, ee.FeatureCollection):
        roi = roi.geometry()
    elif isinstance(roi, ee.Geometry):
        pass
    else:
        raise ValueError("The provided roi is invalid. It must be an ee.Geometry")

    if out_gif is None:
        out_gif = temp_file_path(".gif")
    elif not out_gif.endswith(".gif"):
        raise ValueError("The output file must end with .gif")
    else:
        out_gif = os.path.abspath(out_gif)
    out_dir = os.path.dirname(out_gif)

    if not os.path.exists(out_dir):
        os.makedirs(out_dir)

    allowed_bands = ["Blue", "Green", "Red", "NIR", "SWIR1", "SWIR2", "pixel_qa"]

    if len(bands) == 3 and all(x in allowed_bands for x in bands):
        pass
    else:
        raise Exception(
            "You can only select 3 bands from the following: {}".format(
                ", ".join(allowed_bands)
            )
        )

    if nd_bands is not None:
        if len(nd_bands) == 2 and all(x in allowed_bands[:-1] for x in nd_bands):
            pass
        else:
            raise Exception(
                "You can only select two bands from the following: {}".format(
                    ", ".join(allowed_bands[:-1])
                )
            )

    try:
        if vis_params is None:
            vis_params = {}
            vis_params["bands"] = bands
            vis_params["min"] = 0
            vis_params["max"] = 4000
            vis_params["gamma"] = [1, 1, 1]
        raw_col = landsat_timeseries(
            roi,
            start_year,
            end_year,
            start_date,
            end_date,
            apply_fmask,
            frequency,
            date_format,
        )

        col = raw_col.select(bands).map(
            lambda img: img.visualize(**vis_params).set(
                {
                    "system:time_start": img.get("system:time_start"),
                    "system:date": img.get("system:date"),
                }
            )
        )
        if overlay_data is not None:
            col = add_overlay(
                col, overlay_data, overlay_color, overlay_width, overlay_opacity
            )

        if (
            isinstance(dimensions, int)
            and dimensions > 768
            or isinstance(dimensions, str)
            and any(dim > 768 for dim in list(map(int, dimensions.split("x"))))
        ):
            count = col.size().getInfo()
            basename = os.path.basename(out_gif)[:-4]
            names = [
                os.path.join(
                    out_dir, f"{basename}_{str(i+1).zfill(int(len(str(count))))}.jpg"
                )
                for i in range(count)
            ]
            get_image_collection_thumbnails(
                col,
                out_dir,
                vis_params={
                    "min": 0,
                    "max": 255,
                    "bands": ["vis-red", "vis-green", "vis-blue"],
                },
                dimensions=dimensions,
                names=names,
            )
            make_gif(
                names,
                out_gif,
                fps=frames_per_second,
                loop=loop,
                mp4=False,
                clean_up=True,
            )

        else:
            video_args = vis_params.copy()
            video_args["dimensions"] = dimensions
            video_args["region"] = roi
            video_args["framesPerSecond"] = frames_per_second
            video_args["crs"] = crs
            video_args["bands"] = ["vis-red", "vis-green", "vis-blue"]
            video_args["min"] = 0
            video_args["max"] = 255

            download_ee_video(col, video_args, out_gif)

        if os.path.exists(out_gif):
            if title is not None and isinstance(title, str):
                add_text_to_gif(
                    out_gif,
                    out_gif,
                    xy=title_xy,
                    text_sequence=title,
                    font_type=font_type,
                    font_size=font_size,
                    font_color=font_color,
                    add_progress_bar=add_progress_bar,
                    progress_bar_color=progress_bar_color,
                    progress_bar_height=progress_bar_height,
                    duration=1000 / frames_per_second,
                    loop=loop,
                )
            if add_text:
                if text_sequence is None:
                    text_sequence = col.aggregate_array("system:date").getInfo()
                add_text_to_gif(
                    out_gif,
                    out_gif,
                    xy=text_xy,
                    text_sequence=text_sequence,
                    font_type=font_type,
                    font_size=font_size,
                    font_color=font_color,
                    add_progress_bar=add_progress_bar,
                    progress_bar_color=progress_bar_color,
                    progress_bar_height=progress_bar_height,
                    duration=1000 / frames_per_second,
                    loop=loop,
                )

        if nd_bands is not None:
            nd_images = landsat_ts_norm_diff(
                raw_col, bands=nd_bands, threshold=nd_threshold
            )
            out_nd_gif = out_gif.replace(".gif", "_nd.gif")
            landsat_ts_norm_diff_gif(
                nd_images,
                out_gif=out_nd_gif,
                vis_params=None,
                palette=nd_palette,
                dimensions=dimensions,
                frames_per_second=frames_per_second,
            )

        if os.path.exists(out_gif):
            reduce_gif_size(out_gif)

        if isinstance(fading, bool):
            fading = int(fading)
        if fading > 0:
            gif_fading(out_gif, out_gif, duration=fading, verbose=False)

        if mp4:
            out_mp4 = out_gif.replace(".gif", ".mp4")
            gif_to_mp4(out_gif, out_mp4)

        return out_gif

    except Exception as e:
        raise Exception(e)

landsat_timeseries(roi=None, start_year=1984, end_year=None, start_date='06-10', end_date='09-20', apply_fmask=True, frequency='year', date_format=None, step=1)

Generates an annual Landsat ImageCollection. This algorithm is adapted from https://gist.github.com/jdbcode/76b9ac49faf51627ebd3ff988e10adbc. A huge thank you to Justin Braaten for sharing his fantastic work.

Parameters:

Name Type Description Default
roi object

Region of interest to create the timelapse. Defaults to None.

None
start_year int

Starting year for the timelapse. Defaults to 1984.

1984
end_year int

Ending year for the timelapse. Defaults to None, which means the current year.

None
start_date str

Starting date (month-day) each year for filtering ImageCollection. Defaults to '06-10'.

'06-10'
end_date str

Ending date (month-day) each year for filtering ImageCollection. Defaults to '09-20'.

'09-20'
apply_fmask bool

Whether to apply Fmask (Function of mask) for automated clouds, cloud shadows, snow, and water masking.

True
frequency str

Frequency of the timelapse. Defaults to 'year'.

'year'
date_format str

Format of the date. Defaults to None.

None
step int

The step size to use when creating the date sequence. Defaults to 1.

1

Returns:

Type Description
object

Returns an ImageCollection containing annual Landsat images.

Source code in geemap/timelapse.py
def landsat_timeseries(
    roi=None,
    start_year=1984,
    end_year=None,
    start_date="06-10",
    end_date="09-20",
    apply_fmask=True,
    frequency="year",
    date_format=None,
    step=1,
):
    """Generates an annual Landsat ImageCollection. This algorithm is adapted from https://gist.github.com/jdbcode/76b9ac49faf51627ebd3ff988e10adbc. A huge thank you to Justin Braaten for sharing his fantastic work.

    Args:
        roi (object, optional): Region of interest to create the timelapse. Defaults to None.
        start_year (int, optional): Starting year for the timelapse. Defaults to 1984.
        end_year (int, optional): Ending year for the timelapse. Defaults to None, which means the current year.
        start_date (str, optional): Starting date (month-day) each year for filtering ImageCollection. Defaults to '06-10'.
        end_date (str, optional): Ending date (month-day) each year for filtering ImageCollection. Defaults to '09-20'.
        apply_fmask (bool, optional): Whether to apply Fmask (Function of mask) for automated clouds, cloud shadows, snow, and water masking.
        frequency (str, optional): Frequency of the timelapse. Defaults to 'year'.
        date_format (str, optional): Format of the date. Defaults to None.
        step (int, optional): The step size to use when creating the date sequence. Defaults to 1.
    Returns:
        object: Returns an ImageCollection containing annual Landsat images.
    """

    # Input and output parameters.
    import re

    if roi is None:
        roi = ee.Geometry.Polygon(
            [
                [
                    [-115.471773, 35.892718],
                    [-115.471773, 36.409454],
                    [-114.271283, 36.409454],
                    [-114.271283, 35.892718],
                    [-115.471773, 35.892718],
                ]
            ],
            None,
            False,
        )

    if end_year is None:
        end_year = get_current_year()

    if not isinstance(roi, ee.Geometry):
        try:
            roi = roi.geometry()
        except Exception as e:
            print("Could not convert the provided roi to ee.Geometry")
            print(e)
            return

    feq_dict = {
        "year": "YYYY",
        "month": "YYYY-MM",
        "quarter": "YYYY-MM",
    }

    if date_format is None:
        date_format = feq_dict[frequency]

    if frequency not in feq_dict:
        raise ValueError("frequency must be year, quarter, or month.")

    # Setup vars to get dates.
    if (
        isinstance(start_year, int)
        and (start_year >= 1984)
        and (start_year < get_current_year())
    ):
        pass
    else:
        print("The start year must be an integer >= 1984.")
        return

    if (
        isinstance(end_year, int)
        and (end_year > 1984)
        and (end_year <= get_current_year())
    ):
        pass
    else:
        print(f"The end year must be an integer <= {get_current_year()}.")
        return

    if re.match(r"[0-9]{2}-[0-9]{2}", start_date) and re.match(
        r"[0-9]{2}-[0-9]{2}", end_date
    ):
        pass
    else:
        print("The start date and end date must be month-day, such as 06-10, 09-20")
        return

    try:
        datetime.datetime(int(start_year), int(start_date[:2]), int(start_date[3:5]))
        datetime.datetime(int(end_year), int(end_date[:2]), int(end_date[3:5]))
    except Exception as e:
        print("The input dates are invalid.")
        raise Exception(e)

    def days_between(d1, d2):
        d1 = datetime.datetime.strptime(d1, "%Y-%m-%d")
        d2 = datetime.datetime.strptime(d2, "%Y-%m-%d")
        return abs((d2 - d1).days)

    n_days = days_between(
        str(start_year) + "-" + start_date, str(start_year) + "-" + end_date
    )
    start_month = int(start_date[:2])
    start_day = int(start_date[3:5])

    # Landsat collection preprocessingEnabled
    # Get Landsat surface reflectance collections for OLI, ETM+ and TM sensors.
    LC09col = ee.ImageCollection("LANDSAT/LC09/C02/T1_L2")
    LC08col = ee.ImageCollection("LANDSAT/LC08/C02/T1_L2")
    LE07col = ee.ImageCollection("LANDSAT/LE07/C02/T1_L2")
    LT05col = ee.ImageCollection("LANDSAT/LT05/C02/T1_L2")
    LT04col = ee.ImageCollection("LANDSAT/LT04/C02/T1_L2")

    # Define a collection filter by date, bounds, and quality.
    def colFilter(col, roi, start_date, end_date):
        return col.filterBounds(roi).filterDate(start_date, end_date)

    # Function to get and rename bands of interest from OLI.
    def renameOli(img):
        return img.select(
            ["SR_B2", "SR_B3", "SR_B4", "SR_B5", "SR_B6", "SR_B7"],
            ["Blue", "Green", "Red", "NIR", "SWIR1", "SWIR2"],
        )

    # Function to get and rename bands of interest from ETM+.
    def renameEtm(img):
        return img.select(
            ["SR_B1", "SR_B2", "SR_B3", "SR_B4", "SR_B5", "SR_B7"],
            ["Blue", "Green", "Red", "NIR", "SWIR1", "SWIR2"],
        )

    def fmask(image):
        # see https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC09_C02_T1_L2
        # Bit 0 - Fill
        # Bit 1 - Dilated Cloud
        # Bit 2 - Cirrus
        # Bit 3 - Cloud
        # Bit 4 - Cloud Shadow
        qaMask = image.select("QA_PIXEL").bitwiseAnd(int("11111", 2)).eq(0)

        # Apply the scaling factors to the appropriate bands.
        opticalBands = image.select("SR_B.").multiply(0.0000275).add(-0.2)

        # Replace the original bands with the scaled ones and apply the masks.
        return image.addBands(opticalBands, None, True).updateMask(qaMask)

    # Define function to prepare OLI images.
    def prepOli(img):
        orig = img
        if apply_fmask:
            img = fmask(img)
        else:
            img = img.select("SR_B.").multiply(0.0000275).add(-0.2)
        img = renameOli(img)
        return ee.Image(img.copyProperties(orig, orig.propertyNames())).resample(
            "bicubic"
        )

    # Define function to prepare ETM+ images.
    def prepEtm(img):
        orig = img
        if apply_fmask:
            img = fmask(img)
        else:
            img = img.select("SR_B.").multiply(0.0000275).add(-0.2)
        img = renameEtm(img)
        return ee.Image(img.copyProperties(orig, orig.propertyNames())).resample(
            "bicubic"
        )

    # Get annual median collection.
    def getAnnualComp(y):
        startDate = ee.Date.fromYMD(
            ee.Number(y), ee.Number(start_month), ee.Number(start_day)
        )
        endDate = startDate.advance(ee.Number(n_days), "day")

        # Filter collections and prepare them for merging.
        LC09coly = colFilter(LC09col, roi, startDate, endDate).map(prepOli)
        LC08coly = colFilter(LC08col, roi, startDate, endDate).map(prepOli)
        LE07coly = colFilter(LE07col, roi, startDate, endDate).map(prepEtm)
        LT05coly = colFilter(LT05col, roi, startDate, endDate).map(prepEtm)
        LT04coly = colFilter(LT04col, roi, startDate, endDate).map(prepEtm)

        # Merge the collections.
        col = LC09coly.merge(LC08coly).merge(LE07coly).merge(LT05coly).merge(LT04coly)

        yearImg = col.median()
        nBands = yearImg.bandNames().size()
        yearImg = ee.Image(ee.Algorithms.If(nBands, yearImg, dummyImg))
        return yearImg.set(
            {
                "year": y,
                "system:time_start": startDate.millis(),
                "nBands": nBands,
                "system:date": ee.Date(startDate).format(date_format),
            }
        )

    # Get monthly median collection.
    def getMonthlyComp(startDate):
        startDate = ee.Date(startDate)
        endDate = startDate.advance(1, "month")

        # Filter collections and prepare them for merging.
        LC09coly = colFilter(LC09col, roi, startDate, endDate).map(prepOli)
        LC08coly = colFilter(LC08col, roi, startDate, endDate).map(prepOli)
        LE07coly = colFilter(LE07col, roi, startDate, endDate).map(prepEtm)
        LT05coly = colFilter(LT05col, roi, startDate, endDate).map(prepEtm)
        LT04coly = colFilter(LT04col, roi, startDate, endDate).map(prepEtm)

        # Merge the collections.
        col = LC09coly.merge(LC08coly).merge(LE07coly).merge(LT05coly).merge(LT04coly)

        monthImg = col.median()
        nBands = monthImg.bandNames().size()
        monthImg = ee.Image(ee.Algorithms.If(nBands, monthImg, dummyImg))
        return monthImg.set(
            {
                "system:time_start": startDate.millis(),
                "nBands": nBands,
                "system:date": ee.Date(startDate).format(date_format),
            }
        )

    # Get quarterly median collection.
    def getQuarterlyComp(startDate):
        startDate = ee.Date(startDate)

        endDate = startDate.advance(3, "month")

        # Filter collections and prepare them for merging.
        LC09coly = colFilter(LC09col, roi, startDate, endDate).map(prepOli)
        LC08coly = colFilter(LC08col, roi, startDate, endDate).map(prepOli)
        LE07coly = colFilter(LE07col, roi, startDate, endDate).map(prepEtm)
        LT05coly = colFilter(LT05col, roi, startDate, endDate).map(prepEtm)
        LT04coly = colFilter(LT04col, roi, startDate, endDate).map(prepEtm)

        # Merge the collections.
        col = LC09coly.merge(LC08coly).merge(LE07coly).merge(LT05coly).merge(LT04coly)

        quarter = col.median()
        nBands = quarter.bandNames().size()
        quarter = ee.Image(ee.Algorithms.If(nBands, quarter, dummyImg))
        return quarter.set(
            {
                "system:time_start": startDate.millis(),
                "nBands": nBands,
                "system:date": ee.Date(startDate).format(date_format),
            }
        )

    # Make a dummy image for missing years.
    bandNames = ee.List(["Blue", "Green", "Red", "NIR", "SWIR1", "SWIR2", "pixel_qa"])
    fillerValues = ee.List.repeat(0, bandNames.size())
    dummyImg = ee.Image.constant(fillerValues).rename(bandNames).selfMask().int16()

    # Make list of /quarterly/monthly image composites.

    if frequency == "year":
        years = ee.List.sequence(start_year, end_year, step)
        imgList = years.map(getAnnualComp)
    elif frequency == "quarter":
        quarters = date_sequence(
            str(start_year) + "-01-01",
            str(end_year) + "-12-31",
            "quarter",
            date_format,
            step,
        )
        imgList = quarters.map(getQuarterlyComp)
    elif frequency == "month":
        months = date_sequence(
            str(start_year) + "-01-01",
            str(end_year) + "-12-31",
            "month",
            date_format,
            step,
        )
        imgList = months.map(getMonthlyComp)

    # Convert image composite list to collection
    imgCol = ee.ImageCollection.fromImages(imgList)

    imgCol = imgCol.map(
        lambda img: img.clip(roi).set({"coordinates": roi.coordinates()})
    )

    return imgCol

landsat_timeseries_legacy(roi=None, start_year=1984, end_year=2021, start_date='06-10', end_date='09-20', apply_fmask=True, frequency='year', date_format=None)

Generates an annual Landsat ImageCollection. This algorithm is adapted from https://gist.github.com/jdbcode/76b9ac49faf51627ebd3ff988e10adbc. A huge thank you to Justin Braaten for sharing his fantastic work.

Parameters:

Name Type Description Default
roi object

Region of interest to create the timelapse. Defaults to None.

None
start_year int

Starting year for the timelapse. Defaults to 1984.

1984
end_year int

Ending year for the timelapse. Defaults to 2021.

2021
start_date str

Starting date (month-day) each year for filtering ImageCollection. Defaults to '06-10'.

'06-10'
end_date str

Ending date (month-day) each year for filtering ImageCollection. Defaults to '09-20'.

'09-20'
apply_fmask bool

Whether to apply Fmask (Function of mask) for automated clouds, cloud shadows, snow, and water masking.

True
frequency str

Frequency of the timelapse. Defaults to 'year'.

'year'
date_format str

Format of the date. Defaults to None.

None

Returns:

Type Description
object

Returns an ImageCollection containing annual Landsat images.

Source code in geemap/timelapse.py
def landsat_timeseries_legacy(
    roi=None,
    start_year=1984,
    end_year=2021,
    start_date="06-10",
    end_date="09-20",
    apply_fmask=True,
    frequency="year",
    date_format=None,
):
    """Generates an annual Landsat ImageCollection. This algorithm is adapted from https://gist.github.com/jdbcode/76b9ac49faf51627ebd3ff988e10adbc. A huge thank you to Justin Braaten for sharing his fantastic work.
    Args:
        roi (object, optional): Region of interest to create the timelapse. Defaults to None.
        start_year (int, optional): Starting year for the timelapse. Defaults to 1984.
        end_year (int, optional): Ending year for the timelapse. Defaults to 2021.
        start_date (str, optional): Starting date (month-day) each year for filtering ImageCollection. Defaults to '06-10'.
        end_date (str, optional): Ending date (month-day) each year for filtering ImageCollection. Defaults to '09-20'.
        apply_fmask (bool, optional): Whether to apply Fmask (Function of mask) for automated clouds, cloud shadows, snow, and water masking.
        frequency (str, optional): Frequency of the timelapse. Defaults to 'year'.
        date_format (str, optional): Format of the date. Defaults to None.
    Returns:
        object: Returns an ImageCollection containing annual Landsat images.
    """

    ################################################################################
    # Input and output parameters.
    import re

    # import datetime

    if roi is None:
        roi = ee.Geometry.Polygon(
            [
                [
                    [-115.471773, 35.892718],
                    [-115.471773, 36.409454],
                    [-114.271283, 36.409454],
                    [-114.271283, 35.892718],
                    [-115.471773, 35.892718],
                ]
            ],
            None,
            False,
        )

    if not isinstance(roi, ee.Geometry):
        try:
            roi = roi.geometry()
        except Exception as e:
            print("Could not convert the provided roi to ee.Geometry")
            print(e)
            return

    feq_dict = {
        "year": "YYYY",
        "month": "YYYY-MM",
        "quarter": "YYYY-MM",
    }

    if date_format is None:
        date_format = feq_dict[frequency]

    if frequency not in feq_dict:
        raise ValueError("frequency must be year, quarter, or month.")

    ################################################################################

    # Setup vars to get dates.
    if isinstance(start_year, int) and (start_year >= 1984) and (start_year < 2021):
        pass
    else:
        print("The start year must be an integer >= 1984.")
        return

    if isinstance(end_year, int) and (end_year > 1984) and (end_year <= 2021):
        pass
    else:
        print("The end year must be an integer <= 2021.")
        return

    if re.match(r"[0-9]{2}-[0-9]{2}", start_date) and re.match(
        r"[0-9]{2}-[0-9]{2}", end_date
    ):
        pass
    else:
        print("The start date and end date must be month-day, such as 06-10, 09-20")
        return

    try:
        datetime.datetime(int(start_year), int(start_date[:2]), int(start_date[3:5]))
        datetime.datetime(int(end_year), int(end_date[:2]), int(end_date[3:5]))
    except Exception as e:
        print("The input dates are invalid.")
        raise Exception(e)

    def days_between(d1, d2):
        d1 = datetime.datetime.strptime(d1, "%Y-%m-%d")
        d2 = datetime.datetime.strptime(d2, "%Y-%m-%d")
        return abs((d2 - d1).days)

    n_days = days_between(
        str(start_year) + "-" + start_date, str(start_year) + "-" + end_date
    )
    start_month = int(start_date[:2])
    start_day = int(start_date[3:5])
    # start_date = str(start_year) + "-" + start_date
    # end_date = str(end_year) + "-" + end_date

    # # Define a collection filter by date, bounds, and quality.
    # def colFilter(col, aoi):  # , startDate, endDate):
    #     return(col.filterBounds(aoi))

    # Landsat collection preprocessingEnabled
    # Get Landsat surface reflectance collections for OLI, ETM+ and TM sensors.
    LC08col = ee.ImageCollection("LANDSAT/LC08/C01/T1_SR")
    LE07col = ee.ImageCollection("LANDSAT/LE07/C01/T1_SR")
    LT05col = ee.ImageCollection("LANDSAT/LT05/C01/T1_SR")
    LT04col = ee.ImageCollection("LANDSAT/LT04/C01/T1_SR")

    # Define a collection filter by date, bounds, and quality.
    def colFilter(col, roi, start_date, end_date):
        return col.filterBounds(roi).filterDate(start_date, end_date)
        # .filter('CLOUD_COVER < 5')
        # .filter('GEOMETRIC_RMSE_MODEL < 15')
        # .filter('IMAGE_QUALITY == 9 || IMAGE_QUALITY_OLI == 9'))

    # Function to get and rename bands of interest from OLI.
    def renameOli(img):
        return img.select(
            ["B2", "B3", "B4", "B5", "B6", "B7", "pixel_qa"],
            ["Blue", "Green", "Red", "NIR", "SWIR1", "SWIR2", "pixel_qa"],
        )

    # Function to get and rename bands of interest from ETM+.
    def renameEtm(img):
        return img.select(
            ["B1", "B2", "B3", "B4", "B5", "B7", "pixel_qa"],
            ["Blue", "Green", "Red", "NIR", "SWIR1", "SWIR2", "pixel_qa"],
        )

    # Add NBR for LandTrendr segmentation.
    def calcNbr(img):
        return img.addBands(
            img.normalizedDifference(["NIR", "SWIR2"]).multiply(-10000).rename("NBR")
        ).int16()

    # Define function to mask out clouds and cloud shadows in images.
    # Use CFmask band included in USGS Landsat SR image product.
    def fmask(img):
        cloudShadowBitMask = 1 << 3
        cloudsBitMask = 1 << 5
        qa = img.select("pixel_qa")
        mask = (
            qa.bitwiseAnd(cloudShadowBitMask)
            .eq(0)
            .And(qa.bitwiseAnd(cloudsBitMask).eq(0))
        )
        return img.updateMask(mask)

    # Define function to prepare OLI images.
    def prepOli(img):
        orig = img
        img = renameOli(img)
        if apply_fmask:
            img = fmask(img)
        return ee.Image(img.copyProperties(orig, orig.propertyNames())).resample(
            "bicubic"
        )

    # Define function to prepare ETM+ images.
    def prepEtm(img):
        orig = img
        img = renameEtm(img)
        if apply_fmask:
            img = fmask(img)
        return ee.Image(img.copyProperties(orig, orig.propertyNames())).resample(
            "bicubic"
        )

    # Get annual median collection.
    def getAnnualComp(y):
        startDate = ee.Date.fromYMD(
            ee.Number(y), ee.Number(start_month), ee.Number(start_day)
        )
        endDate = startDate.advance(ee.Number(n_days), "day")

        # Filter collections and prepare them for merging.
        LC08coly = colFilter(LC08col, roi, startDate, endDate).map(prepOli)
        LE07coly = colFilter(LE07col, roi, startDate, endDate).map(prepEtm)
        LT05coly = colFilter(LT05col, roi, startDate, endDate).map(prepEtm)
        LT04coly = colFilter(LT04col, roi, startDate, endDate).map(prepEtm)

        # Merge the collections.
        col = LC08coly.merge(LE07coly).merge(LT05coly).merge(LT04coly)

        yearImg = col.median()
        nBands = yearImg.bandNames().size()
        yearImg = ee.Image(ee.Algorithms.If(nBands, yearImg, dummyImg))
        return calcNbr(yearImg).set(
            {
                "year": y,
                "system:time_start": startDate.millis(),
                "nBands": nBands,
                "system:date": ee.Date(startDate).format(date_format),
            }
        )

    # Get monthly median collection.
    def getMonthlyComp(startDate):
        startDate = ee.Date(startDate)
        endDate = startDate.advance(1, "month")

        # Filter collections and prepare them for merging.
        LC08coly = colFilter(LC08col, roi, startDate, endDate).map(prepOli)
        LE07coly = colFilter(LE07col, roi, startDate, endDate).map(prepEtm)
        LT05coly = colFilter(LT05col, roi, startDate, endDate).map(prepEtm)
        LT04coly = colFilter(LT04col, roi, startDate, endDate).map(prepEtm)

        # Merge the collections.
        col = LC08coly.merge(LE07coly).merge(LT05coly).merge(LT04coly)

        monthImg = col.median()
        nBands = monthImg.bandNames().size()
        monthImg = ee.Image(ee.Algorithms.If(nBands, monthImg, dummyImg))
        return calcNbr(monthImg).set(
            {
                "system:time_start": startDate.millis(),
                "nBands": nBands,
                "system:date": ee.Date(startDate).format(date_format),
            }
        )

    # Get quarterly median collection.
    def getQuarterlyComp(startDate):
        startDate = ee.Date(startDate)

        endDate = startDate.advance(3, "month")

        # Filter collections and prepare them for merging.
        LC08coly = colFilter(LC08col, roi, startDate, endDate).map(prepOli)
        LE07coly = colFilter(LE07col, roi, startDate, endDate).map(prepEtm)
        LT05coly = colFilter(LT05col, roi, startDate, endDate).map(prepEtm)
        LT04coly = colFilter(LT04col, roi, startDate, endDate).map(prepEtm)

        # Merge the collections.
        col = LC08coly.merge(LE07coly).merge(LT05coly).merge(LT04coly)

        quarter = col.median()
        nBands = quarter.bandNames().size()
        quarter = ee.Image(ee.Algorithms.If(nBands, quarter, dummyImg))
        return calcNbr(quarter).set(
            {
                "system:time_start": startDate.millis(),
                "nBands": nBands,
                "system:date": ee.Date(startDate).format(date_format),
            }
        )

    ################################################################################

    # Make a dummy image for missing years.
    bandNames = ee.List(["Blue", "Green", "Red", "NIR", "SWIR1", "SWIR2", "pixel_qa"])
    fillerValues = ee.List.repeat(0, bandNames.size())
    dummyImg = ee.Image.constant(fillerValues).rename(bandNames).selfMask().int16()

    # ################################################################################
    # # Get a list of years
    # years = ee.List.sequence(start_year, end_year)

    # ################################################################################
    # # Make list of annual image composites.
    # imgList = years.map(getAnnualComp)

    if frequency == "year":
        years = ee.List.sequence(start_year, end_year)
        imgList = years.map(getAnnualComp)
    elif frequency == "quarter":
        quarters = date_sequence(
            str(start_year) + "-01-01", str(end_year) + "-12-31", "quarter", date_format
        )
        imgList = quarters.map(getQuarterlyComp)
    elif frequency == "month":
        months = date_sequence(
            str(start_year) + "-01-01", str(end_year) + "-12-31", "month", date_format
        )
        imgList = months.map(getMonthlyComp)

    # Convert image composite list to collection
    imgCol = ee.ImageCollection.fromImages(imgList)

    imgCol = imgCol.map(
        lambda img: img.clip(roi).set({"coordinates": roi.coordinates()})
    )

    return imgCol

    # ################################################################################
    # # Run LandTrendr.
    # lt = ee.Algorithms.TemporalSegmentation.LandTrendr(
    #     timeSeries=imgCol.select(['NBR', 'SWIR1', 'NIR', 'Green']),
    #     maxSegments=10,
    #     spikeThreshold=0.7,
    #     vertexCountOvershoot=3,
    #     preventOneYearRecovery=True,
    #     recoveryThreshold=0.5,
    #     pvalThreshold=0.05,
    #     bestModelProportion=0.75,
    #     minObservationsNeeded=6)

    # ################################################################################
    # # Get fitted imagery. This starts export tasks.
    # def getYearStr(year):
    #     return(ee.String('yr_').cat(ee.Algorithms.String(year).slice(0,4)))

    # yearsStr = years.map(getYearStr)

    # r = lt.select(['SWIR1_fit']).arrayFlatten([yearsStr]).toShort()
    # g = lt.select(['NIR_fit']).arrayFlatten([yearsStr]).toShort()
    # b = lt.select(['Green_fit']).arrayFlatten([yearsStr]).toShort()

    # for i, c in zip([r, g, b], ['r', 'g', 'b']):
    #     descr = 'mamore-river-'+c
    #     name = 'users/user/'+descr
    #     print(name)
    #     task = ee.batch.Export.image.toAsset(
    #     image=i,
    #     region=roi.getInfo()['coordinates'],
    #     assetId=name,
    #     description=descr,
    #     scale=30,
    #     crs='EPSG:3857',
    #     maxPixels=1e13)
    #     task.start()

landsat_ts_norm_diff(collection, bands=['Green', 'SWIR1'], threshold=0)

Computes a normalized difference index based on a Landsat timeseries.

Parameters:

Name Type Description Default
collection ee.ImageCollection

A Landsat timeseries.

required
bands list

The bands to use for computing normalized difference. Defaults to ['Green', 'SWIR1'].

['Green', 'SWIR1']
threshold float

The threshold to extract features. Defaults to 0.

0

Returns:

Type Description
ee.ImageCollection

An ImageCollection containing images with values greater than the specified threshold.

Source code in geemap/timelapse.py
def landsat_ts_norm_diff(collection, bands=["Green", "SWIR1"], threshold=0):
    """Computes a normalized difference index based on a Landsat timeseries.

    Args:
        collection (ee.ImageCollection): A Landsat timeseries.
        bands (list, optional): The bands to use for computing normalized difference. Defaults to ['Green', 'SWIR1'].
        threshold (float, optional): The threshold to extract features. Defaults to 0.

    Returns:
        ee.ImageCollection: An ImageCollection containing images with values greater than the specified threshold.
    """
    nd_images = collection.map(
        lambda img: img.normalizedDifference(bands)
        .gt(threshold)
        .copyProperties(img, img.propertyNames())
    )
    return nd_images

landsat_ts_norm_diff_gif(collection, out_gif=None, vis_params=None, palette=['black', 'blue'], dimensions=768, frames_per_second=10, mp4=False)

[summary]

Parameters:

Name Type Description Default
collection ee.ImageCollection

The normalized difference Landsat timeseires.

required
out_gif str

File path to the output animated GIF. Defaults to None.

None
vis_params dict

Visualization parameters. Defaults to None.

None
palette list

The palette to use for visualizing the timelapse. Defaults to ['black', 'blue']. The first color in the list is the background color.

['black', 'blue']
dimensions int

a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.

768
frames_per_second int

Animation speed. Defaults to 10.

10
mp4 bool

If True, the output gif will be converted to mp4. Defaults to False.

False

Returns:

Type Description
str

File path to the output animated GIF.

Source code in geemap/timelapse.py
def landsat_ts_norm_diff_gif(
    collection,
    out_gif=None,
    vis_params=None,
    palette=["black", "blue"],
    dimensions=768,
    frames_per_second=10,
    mp4=False,
):
    """[summary]

    Args:
        collection (ee.ImageCollection): The normalized difference Landsat timeseires.
        out_gif (str, optional): File path to the output animated GIF. Defaults to None.
        vis_params (dict, optional): Visualization parameters. Defaults to None.
        palette (list, optional): The palette to use for visualizing the timelapse. Defaults to ['black', 'blue']. The first color in the list is the background color.
        dimensions (int, optional): a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.
        frames_per_second (int, optional): Animation speed. Defaults to 10.
        mp4 (bool, optional): If True, the output gif will be converted to mp4. Defaults to False.

    Returns:
        str: File path to the output animated GIF.
    """
    coordinates = ee.Image(collection.first()).get("coordinates")
    roi = ee.Geometry.Polygon(coordinates, None, False)

    if out_gif is None:
        out_dir = os.path.join(os.path.expanduser("~"), "Downloads")
        filename = "landsat_ts_nd_" + random_string() + ".gif"
        out_gif = os.path.join(out_dir, filename)
    elif not out_gif.endswith(".gif"):
        raise Exception("The output file must end with .gif")

    bands = ["nd"]
    if vis_params is None:
        vis_params = {}
        vis_params["bands"] = bands
        vis_params["palette"] = palette

    video_args = vis_params.copy()
    video_args["dimensions"] = dimensions
    video_args["region"] = roi
    video_args["framesPerSecond"] = frames_per_second
    video_args["crs"] = "EPSG:3857"

    if "bands" not in video_args.keys():
        video_args["bands"] = bands

    download_ee_video(collection, video_args, out_gif)

    if os.path.exists(out_gif):
        reduce_gif_size(out_gif)

    if mp4:
        out_mp4 = out_gif.replace(".gif", ".mp4")
        gif_to_mp4(out_gif, out_mp4)

make_gif(images, out_gif, ext='jpg', fps=10, loop=0, mp4=False, clean_up=False)

Creates a gif from a list of images.

Parameters:

Name Type Description Default
images list | str

The list of images or input directory to create the gif from.

required
out_gif str

File path to the output gif.

required
ext str

The extension of the images. Defaults to 'jpg'.

'jpg'
fps int

The frames per second of the gif. Defaults to 10.

10
loop int

The number of times to loop the gif. Defaults to 0.

0
mp4 bool

Whether to convert the gif to mp4. Defaults to False.

False
Source code in geemap/timelapse.py
def make_gif(
    images: Union[List[str], str],
    out_gif: str,
    ext: str = "jpg",
    fps: int = 10,
    loop: int = 0,
    mp4: bool = False,
    clean_up: bool = False,
) -> None:
    """Creates a gif from a list of images.

    Args:
        images (list | str): The list of images or input directory to create the gif from.
        out_gif (str): File path to the output gif.
        ext (str, optional): The extension of the images. Defaults to 'jpg'.
        fps (int, optional): The frames per second of the gif. Defaults to 10.
        loop (int, optional): The number of times to loop the gif. Defaults to 0.
        mp4 (bool, optional): Whether to convert the gif to mp4. Defaults to False.

    """
    if isinstance(images, str) and os.path.isdir(images):
        images = list(glob.glob(os.path.join(images, f"*.{ext}")))
        if len(images) == 0:
            raise ValueError("No images found in the input directory.")
    elif not isinstance(images, list):
        raise ValueError("images must be a list or a path to the image directory.")

    images.sort()

    frames = [Image.open(image) for image in images]
    frame_one = frames[0]
    frame_one.save(
        out_gif,
        format="GIF",
        append_images=frames,
        save_all=True,
        duration=int(1000 / fps),
        loop=loop,
    )

    if mp4:
        if not is_tool("ffmpeg"):
            print("ffmpeg is not installed on your computer.")
            return

        if os.path.exists(out_gif):
            out_mp4 = out_gif.replace(".gif", ".mp4")
            cmd = f"ffmpeg -loglevel error -i {out_gif} -vcodec libx264 -crf 25 -pix_fmt yuv420p {out_mp4}"
            os.system(cmd)
            if not os.path.exists(out_mp4):
                raise Exception(f"Failed to create mp4 file.")
    if clean_up:
        for image in images:
            os.remove(image)

merge_gifs(in_gifs, out_gif)

Merge multiple gifs into one.

Parameters:

Name Type Description Default
in_gifs str | list

The input gifs as a list or a directory path.

required
out_gif str

The output gif.

required

Exceptions:

Type Description
Exception

Raise exception when gifsicle is not installed.

Source code in geemap/timelapse.py
def merge_gifs(in_gifs, out_gif):
    """Merge multiple gifs into one.

    Args:
        in_gifs (str | list): The input gifs as a list or a directory path.
        out_gif (str): The output gif.

    Raises:
        Exception:  Raise exception when gifsicle is not installed.
    """
    import glob

    try:
        if isinstance(in_gifs, str) and os.path.isdir(in_gifs):
            in_gifs = glob.glob(os.path.join(in_gifs, "*.gif"))
        elif not isinstance(in_gifs, list):
            raise Exception("in_gifs must be a list.")

        in_gifs = " ".join(in_gifs)

        cmd = f"gifsicle {in_gifs} > {out_gif}"
        os.system(cmd)

    except Exception as e:
        print(
            "gifsicle is not installed. Run 'sudo apt-get install -y gifsicle' to install it."
        )
        print(e)

modis_ndvi_doy_ts(data='Terra', band='NDVI', start_date=None, end_date=None, region=None)

Create MODIS NDVI timeseries. The source code is adapted from https://developers.google.com/earth-engine/tutorials/community/modis-ndvi-time-series-animation.

Parameters:

Name Type Description Default
data str

Either "Terra" or "Aqua". Defaults to "Terra".

'Terra'
band str

Either the "NDVI" or "EVI" band. Defaults to "NDVI".

'NDVI'
start_date str

The start date used to filter the image collection, e.g., "2013-01-01". Defaults to None.

None
end_date str

The end date used to filter the image collection. Defaults to None.

None
region ee.Geometry

The geometry used to filter the image collection. Defaults to None.

None

Returns:

Type Description
ee.ImageCollection

The MODIS NDVI time series.

Source code in geemap/timelapse.py
def modis_ndvi_doy_ts(
    data="Terra", band="NDVI", start_date=None, end_date=None, region=None
):
    """Create MODIS NDVI timeseries. The source code is adapted from https://developers.google.com/earth-engine/tutorials/community/modis-ndvi-time-series-animation.

    Args:
        data (str, optional): Either "Terra" or "Aqua". Defaults to "Terra".
        band (str, optional): Either the "NDVI" or "EVI" band. Defaults to "NDVI".
        start_date (str, optional): The start date used to filter the image collection, e.g., "2013-01-01". Defaults to None.
        end_date (str, optional): The end date used to filter the image collection. Defaults to None.
        region (ee.Geometry, optional): The geometry used to filter the image collection. Defaults to None.

    Returns:
        ee.ImageCollection: The MODIS NDVI time series.
    """
    if data not in ["Terra", "Aqua"]:
        raise Exception("data must be 'Terra' or 'Aqua'.")

    if band not in ["NDVI", "EVI"]:
        raise Exception("band must be 'NDVI' or 'EVI'.")

    if region is not None:
        if isinstance(region, ee.Geometry) or isinstance(region, ee.FeatureCollection):
            pass
        else:
            raise Exception("region must be an ee.Geometry or ee.FeatureCollection.")

    if data == "Terra":
        col = ee.ImageCollection("MODIS/006/MOD13A2").select(band)
    else:
        col = ee.ImageCollection("MODIS/006/MYD13A2").select(band)

    if (start_date is not None) and (end_date is not None):
        col = col.filterDate(start_date, end_date)

    def set_doy(img):
        doy = ee.Date(img.get("system:time_start")).getRelative("day", "year")
        return img.set("doy", doy)

    col = col.map(set_doy)

    # Get a collection of distinct images by 'doy'.
    distinctDOY = col.filterDate("2013-01-01", "2014-01-01")

    # Define a filter that identifies which images from the complete
    # collection match the DOY from the distinct DOY collection.
    filter = ee.Filter.equals(**{"leftField": "doy", "rightField": "doy"})

    # Define a join.
    join = ee.Join.saveAll("doy_matches")

    # Apply the join and convert the resulting FeatureCollection to an
    # ImageCollection.
    joinCol = ee.ImageCollection(join.apply(distinctDOY, col, filter))

    # Apply median reduction among matching DOY collections.

    def match_doy(img):
        doyCol = ee.ImageCollection.fromImages(img.get("doy_matches"))
        return doyCol.reduce(ee.Reducer.median())

    comp = joinCol.map(match_doy)

    if region is not None:
        return comp.map(lambda img: img.clip(region))
    else:
        return comp

modis_ndvi_timelapse(roi=None, out_gif=None, data='Terra', band='NDVI', start_date=None, end_date=None, dimensions=768, framesPerSecond=10, crs='EPSG:3857', xy=('3%', '3%'), text_sequence=None, font_type='arial.ttf', font_size=20, font_color='#ffffff', add_progress_bar=True, progress_bar_color='white', progress_bar_height=5, loop=0, overlay_data=None, overlay_color='black', overlay_width=1, overlay_opacity=1.0, mp4=False, fading=False, **kwargs)

Create MODIS NDVI timelapse. The source code is adapted from https://developers.google.com/earth-engine/tutorials/community/modis-ndvi-time-series-animation.

Parameters:

Name Type Description Default
roi ee.Geometry

The geometry used to filter the image collection. Defaults to None.

None
out_gif str

The output gif file path. Defaults to None.

None
data str

Either "Terra" or "Aqua". Defaults to "Terra".

'Terra'
band str

Either the "NDVI" or "EVI" band. Defaults to "NDVI".

'NDVI'
start_date str

The start date used to filter the image collection, e.g., "2013-01-01". Defaults to None.

None
end_date str

The end date used to filter the image collection. Defaults to None.

None
dimensions int

a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.

768
frames_per_second int

Animation speed. Defaults to 10.

required
crs str

The coordinate reference system to use. Defaults to "EPSG:3857".

'EPSG:3857'
xy tuple

Top left corner of the text. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

('3%', '3%')
text_sequence int, str, list

Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.

None
font_type str

Font type. Defaults to "arial.ttf".

'arial.ttf'
font_size int

Font size. Defaults to 20.

20
font_color str

Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to '#000000'.

'#ffffff'
add_progress_bar bool

Whether to add a progress bar at the bottom of the GIF. Defaults to True.

True
progress_bar_color str

Color for the progress bar. Defaults to 'white'.

'white'
progress_bar_height int

Height of the progress bar. Defaults to 5.

5
loop int

controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.

0
overlay_data int, str, list

Administrative boundary to be drawn on the timelapse. Defaults to None.

None
overlay_color str

Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.

'black'
overlay_width int

Width of the overlay. Defaults to 1.

1
overlay_opacity float

Opacity of the overlay. Defaults to 1.0.

1.0
mp4 bool

Whether to convert the output gif to mp4. Defaults to False.

False
fading int | bool

If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).

False
Source code in geemap/timelapse.py
def modis_ndvi_timelapse(
    roi=None,
    out_gif=None,
    data="Terra",
    band="NDVI",
    start_date=None,
    end_date=None,
    dimensions=768,
    framesPerSecond=10,
    crs="EPSG:3857",
    xy=("3%", "3%"),
    text_sequence=None,
    font_type="arial.ttf",
    font_size=20,
    font_color="#ffffff",
    add_progress_bar=True,
    progress_bar_color="white",
    progress_bar_height=5,
    loop=0,
    overlay_data=None,
    overlay_color="black",
    overlay_width=1,
    overlay_opacity=1.0,
    mp4=False,
    fading=False,
    **kwargs,
):
    """Create MODIS NDVI timelapse. The source code is adapted from https://developers.google.com/earth-engine/tutorials/community/modis-ndvi-time-series-animation.

    Args:
        roi (ee.Geometry, optional): The geometry used to filter the image collection. Defaults to None.
        out_gif (str): The output gif file path. Defaults to None.
        data (str, optional): Either "Terra" or "Aqua". Defaults to "Terra".
        band (str, optional): Either the "NDVI" or "EVI" band. Defaults to "NDVI".
        start_date (str, optional): The start date used to filter the image collection, e.g., "2013-01-01". Defaults to None.
        end_date (str, optional): The end date used to filter the image collection. Defaults to None.
        dimensions (int, optional): a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.
        frames_per_second (int, optional): Animation speed. Defaults to 10.
        crs (str, optional): The coordinate reference system to use. Defaults to "EPSG:3857".
        xy (tuple, optional): Top left corner of the text. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        text_sequence (int, str, list, optional): Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.
        font_type (str, optional): Font type. Defaults to "arial.ttf".
        font_size (int, optional): Font size. Defaults to 20.
        font_color (str, optional): Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff').  Defaults to '#000000'.
        add_progress_bar (bool, optional): Whether to add a progress bar at the bottom of the GIF. Defaults to True.
        progress_bar_color (str, optional): Color for the progress bar. Defaults to 'white'.
        progress_bar_height (int, optional): Height of the progress bar. Defaults to 5.
        loop (int, optional): controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.
        overlay_data (int, str, list, optional): Administrative boundary to be drawn on the timelapse. Defaults to None.
        overlay_color (str, optional): Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.
        overlay_width (int, optional): Width of the overlay. Defaults to 1.
        overlay_opacity (float, optional): Opacity of the overlay. Defaults to 1.0.
        mp4 (bool, optional): Whether to convert the output gif to mp4. Defaults to False.
        fading (int | bool, optional): If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).

    """

    if roi is None:
        roi = ee.Geometry.Polygon(
            [
                [
                    [-18.6983, 38.1446],
                    [-18.6983, -36.1630],
                    [52.2293, -36.1630],
                    [52.2293, 38.1446],
                ]
            ],
            None,
            False,
        )

    if out_gif is None:
        out_gif = os.path.abspath(f"modis_ndvi_{random_string(3)}.gif")

    try:
        col = modis_ndvi_doy_ts(data, band, start_date, end_date, roi)

        # Define RGB visualization parameters.
        visParams = {
            "min": 0.0,
            "max": 9000.0,
            "palette": [
                "FFFFFF",
                "CE7E45",
                "DF923D",
                "F1B555",
                "FCD163",
                "99B718",
                "74A901",
                "66A000",
                "529400",
                "3E8601",
                "207401",
                "056201",
                "004C00",
                "023B01",
                "012E01",
                "011D01",
                "011301",
            ],
        }

        # Create RGB visualization images for use as animation frames.
        rgbVis = col.map(lambda img: img.visualize(**visParams).clip(roi))

        if overlay_data is not None:
            rgbVis = add_overlay(
                rgbVis,
                overlay_data,
                overlay_color,
                overlay_width,
                overlay_opacity,
                roi,
            )

        # Define GIF visualization arguments.
        videoArgs = {
            "region": roi,
            "dimensions": dimensions,
            "crs": crs,
            "framesPerSecond": framesPerSecond,
        }

        download_ee_video(rgbVis, videoArgs, out_gif)

        if text_sequence is None:
            text = rgbVis.aggregate_array("system:index").getInfo()
            text_sequence = [d.replace("_", "-")[5:] for d in text]

        if os.path.exists(out_gif):
            add_text_to_gif(
                out_gif,
                out_gif,
                xy,
                text_sequence,
                font_type,
                font_size,
                font_color,
                add_progress_bar,
                progress_bar_color,
                progress_bar_height,
                duration=1000 / framesPerSecond,
                loop=loop,
            )

            try:
                reduce_gif_size(out_gif)
                if isinstance(fading, bool):
                    fading = int(fading)
                if fading > 0:
                    gif_fading(out_gif, out_gif, duration=fading, verbose=False)

            except Exception as _:
                pass

        if mp4:
            out_mp4 = out_gif.replace(".gif", ".mp4")
            gif_to_mp4(out_gif, out_mp4)

        return out_gif

    except Exception as e:
        raise Exception(e)

modis_ocean_color_timelapse(satellite, start_date, end_date, roi=None, bands=None, frequency='year', reducer='median', date_format=None, out_gif=None, palette='coolwarm', vis_params=None, dimensions=768, frames_per_second=5, crs='EPSG:3857', overlay_data=None, overlay_color='black', overlay_width=1, overlay_opacity=1.0, title=None, title_xy=('2%', '90%'), add_text=True, text_xy=('2%', '2%'), text_sequence=None, font_type='arial.ttf', font_size=20, font_color='white', add_progress_bar=True, progress_bar_color='white', progress_bar_height=5, add_colorbar=True, colorbar_width=6.0, colorbar_height=0.4, colorbar_label='Sea Surface Temperature (°C)', colorbar_label_size=12, colorbar_label_weight='normal', colorbar_tick_size=10, colorbar_bg_color='white', colorbar_orientation='horizontal', colorbar_dpi='figure', colorbar_xy=None, colorbar_size=(300, 300), loop=0, mp4=False, fading=False)

Creates a ocean color timelapse from MODIS. https://developers.google.com/earth-engine/datasets/catalog/NASA_OCEANDATA_MODIS-Aqua_L3SMI

Parameters:

Name Type Description Default
satellite str

The satellite to use, can be either "Terra" or "Aqua".

required
start_date str

The start date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'.

required
end_date str

The end date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'.

required
roi ee.Geometry

The region to use to filter the collection of images. It must be an ee.Geometry object. Defaults to None.

None
bands list

A list of band names to use in the timelapse. Defaults to None.

None
frequency str

The frequency of the timeseries. It must be one of the following: 'year', 'month', 'day', 'hour', 'minute', 'second'. Defaults to 'year'.

'year'
reducer str

The reducer to use to reduce the collection of images to a single value. It can be one of the following: 'median', 'mean', 'min', 'max', 'variance', 'sum'. Defaults to 'median'.

'median'
drop_empty bool

Whether to drop empty images from the timeseries. Defaults to True.

required
date_format str

A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'.

None
out_gif str

The output gif file path. Defaults to None.

None
palette list

A list of colors to render a single-band image in the timelapse. Defaults to None.

'coolwarm'
vis_params dict

A dictionary of visualization parameters to use in the timelapse. Defaults to None. See more at https://developers.google.com/earth-engine/guides/image_visualization.

None
dimensions int

a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.

768
frames_per_second int

Animation speed. Defaults to 10.

5
crs str

The coordinate reference system to use. Defaults to "EPSG:3857".

'EPSG:3857'
overlay_data int, str, list

Administrative boundary to be drawn on the timelapse. Defaults to None.

None
overlay_color str

Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.

'black'
overlay_width int

Width of the overlay. Defaults to 1.

1
overlay_opacity float

Opacity of the overlay. Defaults to 1.0.

1.0
title str

The title of the timelapse. Defaults to None.

None
title_xy tuple

Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

('2%', '90%')
add_text bool

Whether to add animated text to the timelapse. Defaults to True.

True
title_xy tuple

Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

('2%', '90%')
text_sequence int, str, list

Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.

None
font_type str

Font type. Defaults to "arial.ttf".

'arial.ttf'
font_size int

Font size. Defaults to 20.

20
font_color str

Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to '#000000'.

'white'
add_progress_bar bool

Whether to add a progress bar at the bottom of the GIF. Defaults to True.

True
progress_bar_color str

Color for the progress bar. Defaults to 'white'.

'white'
progress_bar_height int

Height of the progress bar. Defaults to 5.

5
add_colorbar bool

Whether to add a colorbar to the timelapse. Defaults to False.

True
colorbar_width float

Width of the colorbar. Defaults to 6.0.

6.0
colorbar_height float

Height of the colorbar. Defaults to 0.4.

0.4
colorbar_label str

Label for the colorbar. Defaults to None.

'Sea Surface Temperature (°C)'
colorbar_label_size int

Font size for the colorbar label. Defaults to 12.

12
colorbar_label_weight str

Font weight for the colorbar label. Defaults to 'normal'.

'normal'
colorbar_tick_size int

Font size for the colorbar ticks. Defaults to 10.

10
colorbar_bg_color str

Background color for the colorbar, can be color like "white", "black". Defaults to None.

'white'
colorbar_orientation str

Orientation of the colorbar. Defaults to 'horizontal'.

'horizontal'
colorbar_dpi str

DPI for the colorbar, can be numbers like 100, 300. Defaults to 'figure'.

'figure'
colorbar_xy tuple

Lower left corner of the colorbar. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

None
colorbar_size tuple

Size of the colorbar. It can be formatted like this: (300, 300). Defaults to (300, 300).

(300, 300)
loop int

Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.

0
mp4 bool

Whether to create an mp4 file. Defaults to False.

False
fading int | bool

If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).

False

Returns:

Type Description
str

File path to the timelapse gif.

Source code in geemap/timelapse.py
def modis_ocean_color_timelapse(
    satellite,
    start_date,
    end_date,
    roi=None,
    bands=None,
    frequency="year",
    reducer="median",
    date_format=None,
    out_gif=None,
    palette="coolwarm",
    vis_params=None,
    dimensions=768,
    frames_per_second=5,
    crs="EPSG:3857",
    overlay_data=None,
    overlay_color="black",
    overlay_width=1,
    overlay_opacity=1.0,
    title=None,
    title_xy=("2%", "90%"),
    add_text=True,
    text_xy=("2%", "2%"),
    text_sequence=None,
    font_type="arial.ttf",
    font_size=20,
    font_color="white",
    add_progress_bar=True,
    progress_bar_color="white",
    progress_bar_height=5,
    add_colorbar=True,
    colorbar_width=6.0,
    colorbar_height=0.4,
    colorbar_label="Sea Surface Temperature (°C)",
    colorbar_label_size=12,
    colorbar_label_weight="normal",
    colorbar_tick_size=10,
    colorbar_bg_color="white",
    colorbar_orientation="horizontal",
    colorbar_dpi="figure",
    colorbar_xy=None,
    colorbar_size=(300, 300),
    loop=0,
    mp4=False,
    fading=False,
):
    """Creates a ocean color timelapse from MODIS. https://developers.google.com/earth-engine/datasets/catalog/NASA_OCEANDATA_MODIS-Aqua_L3SMI

    Args:
        satellite (str): The satellite to use, can be either "Terra" or "Aqua".
        start_date (str): The start date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'.
        end_date (str): The end date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'.
        roi (ee.Geometry, optional): The region to use to filter the collection of images. It must be an ee.Geometry object. Defaults to None.
        bands (list, optional): A list of band names to use in the timelapse. Defaults to None.
        frequency (str, optional): The frequency of the timeseries. It must be one of the following: 'year', 'month', 'day', 'hour', 'minute', 'second'. Defaults to 'year'.
        reducer (str, optional):  The reducer to use to reduce the collection of images to a single value. It can be one of the following: 'median', 'mean', 'min', 'max', 'variance', 'sum'. Defaults to 'median'.
        drop_empty (bool, optional): Whether to drop empty images from the timeseries. Defaults to True.
        date_format (str, optional): A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'.
        out_gif (str): The output gif file path. Defaults to None.
        palette (list, optional): A list of colors to render a single-band image in the timelapse. Defaults to None.
        vis_params (dict, optional): A dictionary of visualization parameters to use in the timelapse. Defaults to None. See more at https://developers.google.com/earth-engine/guides/image_visualization.
        dimensions (int, optional): a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.
        frames_per_second (int, optional): Animation speed. Defaults to 10.
        crs (str, optional): The coordinate reference system to use. Defaults to "EPSG:3857".
        overlay_data (int, str, list, optional): Administrative boundary to be drawn on the timelapse. Defaults to None.
        overlay_color (str, optional): Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.
        overlay_width (int, optional): Width of the overlay. Defaults to 1.
        overlay_opacity (float, optional): Opacity of the overlay. Defaults to 1.0.
        title (str, optional): The title of the timelapse. Defaults to None.
        title_xy (tuple, optional): Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        add_text (bool, optional): Whether to add animated text to the timelapse. Defaults to True.
        title_xy (tuple, optional): Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        text_sequence (int, str, list, optional): Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.
        font_type (str, optional): Font type. Defaults to "arial.ttf".
        font_size (int, optional): Font size. Defaults to 20.
        font_color (str, optional): Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff').  Defaults to '#000000'.
        add_progress_bar (bool, optional): Whether to add a progress bar at the bottom of the GIF. Defaults to True.
        progress_bar_color (str, optional): Color for the progress bar. Defaults to 'white'.
        progress_bar_height (int, optional): Height of the progress bar. Defaults to 5.
        add_colorbar (bool, optional): Whether to add a colorbar to the timelapse. Defaults to False.
        colorbar_width (float, optional): Width of the colorbar. Defaults to 6.0.
        colorbar_height (float, optional): Height of the colorbar. Defaults to 0.4.
        colorbar_label (str, optional): Label for the colorbar. Defaults to None.
        colorbar_label_size (int, optional): Font size for the colorbar label. Defaults to 12.
        colorbar_label_weight (str, optional): Font weight for the colorbar label. Defaults to 'normal'.
        colorbar_tick_size (int, optional): Font size for the colorbar ticks. Defaults to 10.
        colorbar_bg_color (str, optional): Background color for the colorbar, can be color like "white", "black". Defaults to None.
        colorbar_orientation (str, optional): Orientation of the colorbar. Defaults to 'horizontal'.
        colorbar_dpi (str, optional): DPI for the colorbar, can be numbers like 100, 300. Defaults to 'figure'.
        colorbar_xy (tuple, optional): Lower left corner of the colorbar. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        colorbar_size (tuple, optional): Size of the colorbar. It can be formatted like this: (300, 300). Defaults to (300, 300).
        loop (int, optional): Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.
        mp4 (bool, optional): Whether to create an mp4 file. Defaults to False.
        fading (int | bool, optional): If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).

    Returns:
        str: File path to the timelapse gif.
    """
    collection = modis_ocean_color_timeseries(
        satellite, start_date, end_date, roi, bands, frequency, reducer, date_format
    )

    if bands is None:
        bands = ["sst"]

    if len(bands) == 1 and palette is None:
        palette = "coolwarm"

    if roi is None:
        roi = ee.Geometry.BBox(-99.755133, 18.316722, -79.761194, 31.206929)

    out_gif = create_timelapse(
        collection,
        start_date,
        end_date,
        roi,
        bands,
        frequency,
        reducer,
        date_format,
        out_gif,
        palette,
        vis_params,
        dimensions,
        frames_per_second,
        crs,
        overlay_data,
        overlay_color,
        overlay_width,
        overlay_opacity,
        title,
        title_xy,
        add_text,
        text_xy,
        text_sequence,
        font_type,
        font_size,
        font_color,
        add_progress_bar,
        progress_bar_color,
        progress_bar_height,
        add_colorbar,
        colorbar_width,
        colorbar_height,
        colorbar_label,
        colorbar_label_size,
        colorbar_label_weight,
        colorbar_tick_size,
        colorbar_bg_color,
        colorbar_orientation,
        colorbar_dpi,
        colorbar_xy,
        colorbar_size,
        loop,
        mp4,
        fading,
    )

    return out_gif

modis_ocean_color_timeseries(satellite, start_date, end_date, region=None, bands=None, frequency='year', reducer='median', drop_empty=True, date_format=None, parallel_scale=1)

Creates a ocean color timeseries from MODIS. https://developers.google.com/earth-engine/datasets/catalog/NASA_OCEANDATA_MODIS-Aqua_L3SMI

Parameters:

Name Type Description Default
satellite str

The satellite to use, can be either "Terra" or "Aqua".

required
start_date str

The start date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'.

required
end_date str

The end date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'.

required
region ee.Geometry

The region to use to filter the collection of images. It must be an ee.Geometry object. Defaults to None.

None
bands list

The list of bands to use to create the timeseries. It must be a list of strings. Defaults to None.

None
frequency str

The frequency of the timeseries. It must be one of the following: 'year', 'month', 'day'. Defaults to 'year'.

'year'
reducer str

The reducer to use to reduce the collection of images to a single value. It can be one of the following: 'median', 'mean', 'min', 'max', 'variance', 'sum'. Defaults to 'median'.

'median'
drop_empty bool

Whether to drop empty images from the timeseries. Defaults to True.

True
date_format str

A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'.

None
parallel_scale int

A scaling factor used to limit memory use; using a larger parallel_scale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1.

1

Returns:

Type Description
ee.ImageCollection

The timeseries.

Source code in geemap/timelapse.py
def modis_ocean_color_timeseries(
    satellite,
    start_date,
    end_date,
    region=None,
    bands=None,
    frequency="year",
    reducer="median",
    drop_empty=True,
    date_format=None,
    parallel_scale=1,
):
    """Creates a ocean color timeseries from MODIS. https://developers.google.com/earth-engine/datasets/catalog/NASA_OCEANDATA_MODIS-Aqua_L3SMI

    Args:
        satellite (str): The satellite to use, can be either "Terra" or "Aqua".
        start_date (str): The start date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'.
        end_date (str): The end date of the timeseries. It must be formatted like this: 'YYYY-MM-dd'.
        region (ee.Geometry, optional): The region to use to filter the collection of images. It must be an ee.Geometry object. Defaults to None.
        bands (list, optional): The list of bands to use to create the timeseries. It must be a list of strings. Defaults to None.
        frequency (str, optional): The frequency of the timeseries. It must be one of the following: 'year', 'month', 'day'. Defaults to 'year'.
        reducer (str, optional):  The reducer to use to reduce the collection of images to a single value. It can be one of the following: 'median', 'mean', 'min', 'max', 'variance', 'sum'. Defaults to 'median'.
        drop_empty (bool, optional): Whether to drop empty images from the timeseries. Defaults to True.
        date_format (str, optional): A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'.
        parallel_scale (int, optional): A scaling factor used to limit memory use; using a larger parallel_scale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1.

    Returns:
        ee.ImageCollection: The timeseries.
    """

    if satellite not in ["Terra", "Aqua"]:
        raise Exception("Satellite must be 'Terra' or 'Aqua'.")

    allowed_frequency = ["year", "quarter", "month", "week", "day"]
    if frequency not in allowed_frequency:
        raise Exception(
            "Frequency must be one of the following: {}".format(allowed_frequency)
        )

    if region is not None:
        if isinstance(region, ee.Geometry) or isinstance(region, ee.FeatureCollection):
            pass
        else:
            raise Exception("region must be an ee.Geometry or ee.FeatureCollection.")

    col = ee.ImageCollection(f"NASA/OCEANDATA/MODIS-{satellite}/L3SMI").filterDate(
        start_date, end_date
    )

    ts = create_timeseries(
        col,
        start_date,
        end_date,
        region,
        bands,
        frequency,
        reducer,
        drop_empty,
        date_format,
        parallel_scale,
    )

    return ts

modis_timeseries(asset_id='MODIS/006/MOD13A2', band_name=None, roi=None, start_year=2001, end_year=None, start_date='01-01', end_date='12-31')

Generates a Monthly MODIS ImageCollection.

Parameters:

Name Type Description Default
asset_id str

The asset id the MODIS ImageCollection.

'MODIS/006/MOD13A2'
band_name str

The band name of the image to use.

None
roi object

Region of interest to create the timelapse. Defaults to None.

None
start_year int

Starting year for the timelapse. Defaults to 1984.

2001
end_year int

Ending year for the timelapse. Defaults to None, which is the current year.

None
start_date str

Starting date (month-day) each year for filtering ImageCollection. Defaults to '06-10'.

'01-01'
end_date str

Ending date (month-day) each year for filtering ImageCollection. Defaults to '09-20'.

'12-31'

Returns:

Type Description
object

Returns an ImageCollection containing month MODIS images.

Source code in geemap/timelapse.py
def modis_timeseries(
    asset_id="MODIS/006/MOD13A2",
    band_name=None,
    roi=None,
    start_year=2001,
    end_year=None,
    start_date="01-01",
    end_date="12-31",
):
    """Generates a Monthly MODIS ImageCollection.
    Args:
        asset_id (str, optional): The asset id the MODIS ImageCollection.
        band_name (str, optional): The band name of the image to use.
        roi (object, optional): Region of interest to create the timelapse. Defaults to None.
        start_year (int, optional): Starting year for the timelapse. Defaults to 1984.
        end_year (int, optional): Ending year for the timelapse. Defaults to None, which is the current year.
        start_date (str, optional): Starting date (month-day) each year for filtering ImageCollection. Defaults to '06-10'.
        end_date (str, optional): Ending date (month-day) each year for filtering ImageCollection. Defaults to '09-20'.
    Returns:
        object: Returns an ImageCollection containing month MODIS images.
    """

    try:
        if end_year is None:
            end_year = datetime.datetime.now().year

        collection = ee.ImageCollection(asset_id)
        if band_name is None:
            band_name = collection.first().bandNames().getInfo()[0]
        collection = collection.select(band_name)
        if roi is not None:
            if isinstance(roi, ee.Geometry):
                collection = ee.ImageCollection(
                    collection.map(lambda img: img.clip(roi))
                )
            elif isinstance(roi, ee.FeatureCollection):
                collection = ee.ImageCollection(
                    collection.map(lambda img: img.clipToCollection(roi))
                )

        start = str(start_year) + "-" + start_date
        end = str(end_year) + "-" + end_date

        seq = date_sequence(start, end, "month")

        def monthly_modis(start_d):
            end_d = ee.Date(start_d).advance(1, "month")
            return ee.Image(collection.filterDate(start_d, end_d).mean())

        images = ee.ImageCollection(seq.map(monthly_modis))
        return images

    except Exception as e:
        raise Exception(e)

naip_timelapse(roi, start_year=2003, end_year=None, out_gif=None, bands=None, palette=None, vis_params=None, dimensions=768, frames_per_second=3, crs='EPSG:3857', overlay_data=None, overlay_color='black', overlay_width=1, overlay_opacity=1.0, title=None, title_xy=('2%', '90%'), add_text=True, text_xy=('2%', '2%'), text_sequence=None, font_type='arial.ttf', font_size=20, font_color='white', add_progress_bar=True, progress_bar_color='white', progress_bar_height=5, loop=0, mp4=False, fading=False, step=1)

Create a timelapse from NAIP imagery.

Parameters:

Name Type Description Default
roi ee.Geometry

The region to use to filter the collection of images. It must be an ee.Geometry object. Defaults to None.

required
start_year int | str

The start year of the timeseries. It must be formatted like this: 'YYYY'. Defaults to 2003.

2003
end_year int | str

The end year of the timeseries. It must be formatted like this: 'YYYY'. Defaults to None, which will use the current year.

None
out_gif str

The output gif file path. Defaults to None.

None
bands list

A list of band names to use in the timelapse. Defaults to None.

None
palette list

A list of colors to render a single-band image in the timelapse. Defaults to None.

None
vis_params dict

A dictionary of visualization parameters to use in the timelapse. Defaults to None. See more at https://developers.google.com/earth-engine/guides/image_visualization.

None
dimensions int

a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.

768
frames_per_second int

Animation speed. Defaults to 10.

3
crs str

The coordinate reference system to use. Defaults to "EPSG:3857".

'EPSG:3857'
overlay_data int, str, list

Administrative boundary to be drawn on the timelapse. Defaults to None.

None
overlay_color str

Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.

'black'
overlay_width int

Width of the overlay. Defaults to 1.

1
overlay_opacity float

Opacity of the overlay. Defaults to 1.0.

1.0
title str

The title of the timelapse. Defaults to None.

None
title_xy tuple

Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

('2%', '90%')
add_text bool

Whether to add animated text to the timelapse. Defaults to True.

True
title_xy tuple

Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

('2%', '90%')
text_sequence int, str, list

Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.

None
font_type str

Font type. Defaults to "arial.ttf".

'arial.ttf'
font_size int

Font size. Defaults to 20.

20
font_color str

Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to '#000000'.

'white'
add_progress_bar bool

Whether to add a progress bar at the bottom of the GIF. Defaults to True.

True
progress_bar_color str

Color for the progress bar. Defaults to 'white'.

'white'
progress_bar_height int

Height of the progress bar. Defaults to 5.

5
loop int

Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.

0
mp4 bool

Whether to create an mp4 file. Defaults to False.

False
fading int | bool

If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).

False
step int

The step size to use when creating the date sequence. Defaults to 1.

1

Returns:

Type Description
str

File path to the timelapse gif.

Source code in geemap/timelapse.py
def naip_timelapse(
    roi,
    start_year=2003,
    end_year=None,
    out_gif=None,
    bands=None,
    palette=None,
    vis_params=None,
    dimensions=768,
    frames_per_second=3,
    crs="EPSG:3857",
    overlay_data=None,
    overlay_color="black",
    overlay_width=1,
    overlay_opacity=1.0,
    title=None,
    title_xy=("2%", "90%"),
    add_text=True,
    text_xy=("2%", "2%"),
    text_sequence=None,
    font_type="arial.ttf",
    font_size=20,
    font_color="white",
    add_progress_bar=True,
    progress_bar_color="white",
    progress_bar_height=5,
    loop=0,
    mp4=False,
    fading=False,
    step=1,
):
    """Create a timelapse from NAIP imagery.

    Args:
        roi (ee.Geometry): The region to use to filter the collection of images. It must be an ee.Geometry object. Defaults to None.
        start_year (int | str, optional): The start year of the timeseries. It must be formatted like this: 'YYYY'. Defaults to 2003.
        end_year (int | str, optional): The end year of the timeseries. It must be formatted like this: 'YYYY'. Defaults to None, which will use the current year.
        out_gif (str): The output gif file path. Defaults to None.
        bands (list, optional): A list of band names to use in the timelapse. Defaults to None.
        palette (list, optional): A list of colors to render a single-band image in the timelapse. Defaults to None.
        vis_params (dict, optional): A dictionary of visualization parameters to use in the timelapse. Defaults to None. See more at https://developers.google.com/earth-engine/guides/image_visualization.
        dimensions (int, optional): a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.
        frames_per_second (int, optional): Animation speed. Defaults to 10.
        crs (str, optional): The coordinate reference system to use. Defaults to "EPSG:3857".
        overlay_data (int, str, list, optional): Administrative boundary to be drawn on the timelapse. Defaults to None.
        overlay_color (str, optional): Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.
        overlay_width (int, optional): Width of the overlay. Defaults to 1.
        overlay_opacity (float, optional): Opacity of the overlay. Defaults to 1.0.
        title (str, optional): The title of the timelapse. Defaults to None.
        title_xy (tuple, optional): Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        add_text (bool, optional): Whether to add animated text to the timelapse. Defaults to True.
        title_xy (tuple, optional): Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        text_sequence (int, str, list, optional): Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.
        font_type (str, optional): Font type. Defaults to "arial.ttf".
        font_size (int, optional): Font size. Defaults to 20.
        font_color (str, optional): Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff').  Defaults to '#000000'.
        add_progress_bar (bool, optional): Whether to add a progress bar at the bottom of the GIF. Defaults to True.
        progress_bar_color (str, optional): Color for the progress bar. Defaults to 'white'.
        progress_bar_height (int, optional): Height of the progress bar. Defaults to 5.
        loop (int, optional): Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.
        mp4 (bool, optional): Whether to create an mp4 file. Defaults to False.
        fading (int | bool, optional): If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).
        step (int, optional): The step size to use when creating the date sequence. Defaults to 1.

    Returns:
        str: File path to the timelapse gif.
    """

    try:
        if end_year is None:
            end_year = datetime.datetime.now().year

        collection = ee.ImageCollection("USDA/NAIP/DOQQ")
        start_date = str(start_year) + "-01-01"
        end_date = str(end_year) + "-12-31"
        frequency = "year"
        reducer = "median"
        date_format = "YYYY"

        if bands is not None and isinstance(bands, list) and "N" in bands:
            collection = collection.filter(
                ee.Filter.listContains("system:band_names", "N")
            )

        return create_timelapse(
            collection,
            start_date,
            end_date,
            roi,
            bands,
            frequency,
            reducer,
            date_format,
            out_gif,
            palette,
            vis_params,
            dimensions,
            frames_per_second,
            crs,
            overlay_data,
            overlay_color,
            overlay_width,
            overlay_opacity,
            title,
            title_xy,
            add_text,
            text_xy,
            text_sequence,
            font_type,
            font_size,
            font_color,
            add_progress_bar,
            progress_bar_color,
            progress_bar_height,
            loop=loop,
            mp4=mp4,
            fading=fading,
            step=step,
        )

    except Exception as e:
        raise Exception(e)

naip_timeseries(roi=None, start_year=2003, end_year=None, RGBN=False, step=1)

Creates NAIP annual timeseries

Parameters:

Name Type Description Default
roi object

An ee.Geometry representing the region of interest. Defaults to None.

None
start_year int

Starting year for the timeseries. Defaults to 2003.

2003
end_year int

Ending year for the timeseries. Defaults to None, which will use the current year.

None
RGBN bool

Whether to retrieve 4-band NAIP imagery only.

False
step int

The step size to use when creating the date sequence. Defaults to 1.

1

Returns:

Type Description
object

An ee.ImageCollection representing annual NAIP imagery.

Source code in geemap/timelapse.py
def naip_timeseries(roi=None, start_year=2003, end_year=None, RGBN=False, step=1):
    """Creates NAIP annual timeseries

    Args:
        roi (object, optional): An ee.Geometry representing the region of interest. Defaults to None.
        start_year (int, optional): Starting year for the timeseries. Defaults to 2003.
        end_year (int, optional): Ending year for the timeseries. Defaults to None, which will use the current year.
        RGBN (bool, optional): Whether to retrieve 4-band NAIP imagery only.
        step (int, optional): The step size to use when creating the date sequence. Defaults to 1.
    Returns:
        object: An ee.ImageCollection representing annual NAIP imagery.
    """
    try:
        if end_year is None:
            end_year = datetime.datetime.now().year

        def get_annual_NAIP(year):
            try:
                collection = ee.ImageCollection("USDA/NAIP/DOQQ")
                if roi is not None:
                    collection = collection.filterBounds(roi)
                start_date = ee.Date.fromYMD(year, 1, 1)
                end_date = ee.Date.fromYMD(year, 12, 31)
                naip = collection.filterDate(start_date, end_date)
                if RGBN:
                    naip = naip.filter(ee.Filter.listContains("system:band_names", "N"))
                if roi is not None:
                    if isinstance(roi, ee.Geometry):
                        image = ee.Image(ee.ImageCollection(naip).mosaic().clip(roi))
                    elif isinstance(roi, ee.FeatureCollection):
                        image = ee.Image(
                            ee.ImageCollection(naip).mosaic().clipToCollection(roi)
                        )
                else:
                    image = ee.Image(ee.ImageCollection(naip).mosaic())
                return image.set(
                    {
                        "system:time_start": ee.Date(start_date).millis(),
                        "system:time_end": ee.Date(end_date).millis(),
                        "empty": naip.size().eq(0),
                    }
                )
            except Exception as e:
                raise Exception(e)

        years = ee.List.sequence(start_year, end_year, step)
        collection = ee.ImageCollection(years.map(get_annual_NAIP))
        return collection.filterMetadata("empty", "equals", 0)

    except Exception as e:
        raise Exception(e)

reduce_gif_size(in_gif, out_gif=None)

Reduces a GIF image using ffmpeg.

Parameters:

Name Type Description Default
in_gif str

The input file path to the GIF image.

required
out_gif str

The output file path to the GIF image. Defaults to None.

None
Source code in geemap/timelapse.py
def reduce_gif_size(in_gif, out_gif=None):
    """Reduces a GIF image using ffmpeg.

    Args:
        in_gif (str): The input file path to the GIF image.
        out_gif (str, optional): The output file path to the GIF image. Defaults to None.
    """
    import ffmpeg
    import warnings

    warnings.filterwarnings("ignore")

    if not is_tool("ffmpeg"):
        print("ffmpeg is not installed on your computer.")
        return

    if not os.path.exists(in_gif):
        print("The input gif file does not exist.")
        return

    if out_gif is None:
        out_gif = in_gif
    elif not os.path.exists(os.path.dirname(out_gif)):
        os.makedirs(os.path.dirname(out_gif))

    if in_gif == out_gif:
        tmp_gif = in_gif.replace(".gif", "_tmp.gif")
        shutil.copyfile(in_gif, tmp_gif)
        stream = ffmpeg.input(tmp_gif)
        stream = ffmpeg.output(stream, in_gif, loglevel="quiet").overwrite_output()
        ffmpeg.run(stream)
        os.remove(tmp_gif)

    else:
        stream = ffmpeg.input(in_gif)
        stream = ffmpeg.output(stream, out_gif, loglevel="quiet").overwrite_output()
        ffmpeg.run(stream)

sentinel1_filtering(collection, band='VV', instrumentMode=None, orbitProperties_pass=None, transmitterReceiverPolarisation=None, remove_outliers=True, **kwargs)

Sentinel-1 data is collected with several different instrument configurations, resolutions, band combinations during both ascending and descending orbits. Because of this heterogeneity, it's usually necessary to filter the data down to a homogeneous subset before starting processing.

For more details, see https://developers.google.com/earth-engine/guides/sentinel1

Parameters:

Name Type Description Default
collection

A Sentinel1 ImageCollection to filter.

required
band str

Collection band. Can be one of ['HH','HV','VV','VH']. Defaults to 'VV' which is most commonly available on land.

'VV'
instrumentMode str

Collection property. Can be one of ['IW','EW','SM']. Defaults to band default availability (IW for ['VV','VH'], EW for ['HH','HV']). IW is typically available for land. EW for icy regions.

None
orbitProperties_pass str|None

Collection property. Can be one of ['ASCENDING', 'DESCENDING', None]. Default to 'ASCENDING'. Will return mixed property if set to None, which dampen elevation, and increase surface roughness/fractality visibility.

None
transmitterReceiverPolarisation

Collection property List contains this value. Can be one of ['HH','HV','VV','VH']. Defaults to band.

None
remove_outliers bool

Remove pixels with extreme values (< -30). These can occur near the edge of an image. Default to True.

True
**kwargs dict

All other arguments will be applied as filters to collection properties. F.e. {'resolution_meters':10} Full list properties: https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD#image-properties

{}

Returns:

Type Description
object

Returns a homogeneous ImageCollection of Sentinel 1 images.

Source code in geemap/timelapse.py
def sentinel1_filtering(
    collection,
    band="VV",
    instrumentMode=None,
    orbitProperties_pass=None,
    transmitterReceiverPolarisation=None,
    remove_outliers=True,
    **kwargs,
):
    """
    Sentinel-1 data is collected with several different instrument configurations, resolutions,
    band combinations during both ascending and descending orbits. Because of this heterogeneity,
    it's usually necessary to filter the data down to a homogeneous subset before starting processing.

    For more details, see https://developers.google.com/earth-engine/guides/sentinel1

    Args:
        collection: A Sentinel1 ImageCollection to filter.
        band (str): Collection band. Can be one of ['HH','HV','VV','VH']. Defaults to 'VV' which is most commonly available on land.
        instrumentMode (str, optional): Collection property. Can be one of ['IW','EW','SM']. Defaults to band default availability (IW for ['VV','VH'], EW for ['HH','HV']). IW is typically available for land. EW for icy regions.
        orbitProperties_pass (str|None, optional): Collection property. Can be one of ['ASCENDING', 'DESCENDING', None]. Default to 'ASCENDING'.
            Will return mixed property if set to None, which dampen elevation, and increase surface roughness/fractality visibility.
        transmitterReceiverPolarisation: Collection property List contains this value. Can be one of ['HH','HV','VV','VH']. Defaults to band.
        remove_outliers (bool, optional): Remove pixels with extreme values (< -30). These can occur near the edge of an image. Default to True.
        **kwargs (dict, optional): All other arguments will be applied as filters to collection properties. F.e. {'resolution_meters':10}
            Full list properties: https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD#image-properties

    Returns:
        object: Returns a homogeneous ImageCollection of Sentinel 1 images.
    """

    transmitterReceiverPolarisation = transmitterReceiverPolarisation or band
    instrumentMode = (
        instrumentMode or {"VV": "IW", "VH": "IW", "HH": "EW", "HV": "EW"}[band]
    )

    def remove_outliers(image):
        if not remove_outliers:
            return image
        edge = image.select(band).lt(-30.0)
        maskedimage = image.mask().And(edge.Not())
        return image.updateMask(maskedimage)

    col = (
        collection.filter(ee.Filter.eq("instrumentMode", instrumentMode))
        .filter(
            ee.Filter.listContains(
                "transmitterReceiverPolarisation", transmitterReceiverPolarisation
            )
        )
        .map(remove_outliers)
    )
    for k, v in kwargs.items():
        col = col.filter(ee.Filter.eq(k, v))
    if orbitProperties_pass:
        col = col.filter(ee.Filter.eq("orbitProperties_pass", orbitProperties_pass))

    return col

sentinel1_timelapse(roi, out_gif=None, start_year=2015, end_year=None, start_date='01-01', end_date='12-31', bands=['VV'], frequency='year', reducer='median', date_format=None, palette='Greys', vis_params=None, dimensions=768, frames_per_second=10, crs='EPSG:3857', overlay_data=None, overlay_color='black', overlay_width=1, overlay_opacity=1.0, title=None, title_xy=('2%', '90%'), add_text=True, text_xy=('2%', '2%'), text_sequence=None, font_type='arial.ttf', font_size=20, font_color='white', add_progress_bar=True, progress_bar_color='white', progress_bar_height=5, add_colorbar=False, colorbar_width=6.0, colorbar_height=0.4, colorbar_label=None, colorbar_label_size=12, colorbar_label_weight='normal', colorbar_tick_size=10, colorbar_bg_color=None, colorbar_orientation='horizontal', colorbar_dpi='figure', colorbar_xy=None, colorbar_size=(300, 300), loop=0, mp4=False, fading=False, **kwargs)

Create a timelapse from any ee.ImageCollection.

Parameters:

Name Type Description Default
roi ee.Geometry

The region to use to filter the collection of images. It must be an ee.Geometry object. Defaults to None.

required
out_gif str

The output gif file path. Defaults to None.

None
start_year int

Starting year for the timelapse. Defaults to 2015.

2015
end_year int

Ending year for the timelapse. Defaults to the current year.

None
start_date str

Starting date (month-day) each year for filtering ImageCollection. Defaults to '01-01'.

'01-01'
end_date str

Ending date (month-day) each year for filtering ImageCollection. Defaults to '12-31'.

'12-31'
bands list

A list of band names to use in the timelapse. Can be one of ['VV'],['HV'],['VH'],['HH'],['VV','VH'] or ['HH','HV']

['VV']
frequency str

The frequency of the timeseries. It must be one of the following: 'year', 'month', 'day', 'hour', 'minute', 'second'. Defaults to 'year'.

'year'
reducer str

The reducer to use to reduce the collection of images to a single value. It can be one of the following: 'median', 'mean', 'min', 'max', 'variance', 'sum'. Defaults to 'median'.

'median'
drop_empty bool

Whether to drop empty images from the timeseries. Defaults to True.

required
date_format str

A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'.

None
palette list

A list of colors to render a single-band image in the timelapse. Defaults to None.

'Greys'
vis_params dict

A dictionary of visualization parameters to use in the timelapse. Defaults to None. See more at https://developers.google.com/earth-engine/guides/image_visualization.

None
dimensions int

a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.

768
frames_per_second int

Animation speed. Defaults to 10.

10
crs str

The coordinate reference system to use. Defaults to "EPSG:3857".

'EPSG:3857'
overlay_data int, str, list

Administrative boundary to be drawn on the timelapse. Defaults to None.

None
overlay_color str

Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.

'black'
overlay_width int

Width of the overlay. Defaults to 1.

1
overlay_opacity float

Opacity of the overlay. Defaults to 1.0.

1.0
title str

The title of the timelapse. Defaults to None.

None
title_xy tuple

Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

('2%', '90%')
add_text bool

Whether to add animated text to the timelapse. Defaults to True.

True
title_xy tuple

Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

('2%', '90%')
text_sequence int, str, list

Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.

None
font_type str

Font type. Defaults to "arial.ttf".

'arial.ttf'
font_size int

Font size. Defaults to 20.

20
font_color str

Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to '#000000'.

'white'
add_progress_bar bool

Whether to add a progress bar at the bottom of the GIF. Defaults to True.

True
progress_bar_color str

Color for the progress bar. Defaults to 'white'.

'white'
progress_bar_height int

Height of the progress bar. Defaults to 5.

5
add_colorbar bool

Whether to add a colorbar to the timelapse. Defaults to False.

False
colorbar_width float

Width of the colorbar. Defaults to 6.0.

6.0
colorbar_height float

Height of the colorbar. Defaults to 0.4.

0.4
colorbar_label str

Label for the colorbar. Defaults to None.

None
colorbar_label_size int

Font size for the colorbar label. Defaults to 12.

12
colorbar_label_weight str

Font weight for the colorbar label. Defaults to 'normal'.

'normal'
colorbar_tick_size int

Font size for the colorbar ticks. Defaults to 10.

10
colorbar_bg_color str

Background color for the colorbar, can be color like "white", "black". Defaults to None.

None
colorbar_orientation str

Orientation of the colorbar. Defaults to 'horizontal'.

'horizontal'
colorbar_dpi str

DPI for the colorbar, can be numbers like 100, 300. Defaults to 'figure'.

'figure'
colorbar_xy tuple

Lower left corner of the colorbar. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

None
colorbar_size tuple

Size of the colorbar. It can be formatted like this: (300, 300). Defaults to (300, 300).

(300, 300)
loop int

Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.

0
mp4 bool

Whether to create an mp4 file. Defaults to False.

False
fading int | bool

If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).

False
**kwargs

Arguments for sentinel1_filtering(). Same filters will be applied to all bands.

{}

Returns:

Type Description
str

File path to the timelapse gif.

Source code in geemap/timelapse.py
def sentinel1_timelapse(
    roi,
    out_gif=None,
    start_year=2015,
    end_year=None,
    start_date="01-01",
    end_date="12-31",
    bands=["VV"],
    frequency="year",
    reducer="median",
    date_format=None,
    palette="Greys",
    vis_params=None,
    dimensions=768,
    frames_per_second=10,
    crs="EPSG:3857",
    overlay_data=None,
    overlay_color="black",
    overlay_width=1,
    overlay_opacity=1.0,
    title=None,
    title_xy=("2%", "90%"),
    add_text=True,
    text_xy=("2%", "2%"),
    text_sequence=None,
    font_type="arial.ttf",
    font_size=20,
    font_color="white",
    add_progress_bar=True,
    progress_bar_color="white",
    progress_bar_height=5,
    add_colorbar=False,
    colorbar_width=6.0,
    colorbar_height=0.4,
    colorbar_label=None,
    colorbar_label_size=12,
    colorbar_label_weight="normal",
    colorbar_tick_size=10,
    colorbar_bg_color=None,
    colorbar_orientation="horizontal",
    colorbar_dpi="figure",
    colorbar_xy=None,
    colorbar_size=(300, 300),
    loop=0,
    mp4=False,
    fading=False,
    **kwargs,
):
    """Create a timelapse from any ee.ImageCollection.

    Args:
        roi (ee.Geometry, optional): The region to use to filter the collection of images. It must be an ee.Geometry object. Defaults to None.
        out_gif (str): The output gif file path. Defaults to None.
        start_year (int, optional): Starting year for the timelapse. Defaults to 2015.
        end_year (int, optional): Ending year for the timelapse. Defaults to the current year.
        start_date (str, optional): Starting date (month-day) each year for filtering ImageCollection. Defaults to '01-01'.
        end_date (str, optional): Ending date (month-day) each year for filtering ImageCollection. Defaults to '12-31'.
        bands (list, optional): A list of band names to use in the timelapse. Can be one of ['VV'],['HV'],['VH'],['HH'],['VV','VH'] or ['HH','HV']
        frequency (str, optional): The frequency of the timeseries. It must be one of the following: 'year', 'month', 'day', 'hour', 'minute', 'second'. Defaults to 'year'.
        reducer (str, optional):  The reducer to use to reduce the collection of images to a single value. It can be one of the following: 'median', 'mean', 'min', 'max', 'variance', 'sum'. Defaults to 'median'.
        drop_empty (bool, optional): Whether to drop empty images from the timeseries. Defaults to True.
        date_format (str, optional): A pattern, as described at http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html. Defaults to 'YYYY-MM-dd'.
        palette (list, optional): A list of colors to render a single-band image in the timelapse. Defaults to None.
        vis_params (dict, optional): A dictionary of visualization parameters to use in the timelapse. Defaults to None. See more at https://developers.google.com/earth-engine/guides/image_visualization.
        dimensions (int, optional): a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.
        frames_per_second (int, optional): Animation speed. Defaults to 10.
        crs (str, optional): The coordinate reference system to use. Defaults to "EPSG:3857".
        overlay_data (int, str, list, optional): Administrative boundary to be drawn on the timelapse. Defaults to None.
        overlay_color (str, optional): Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.
        overlay_width (int, optional): Width of the overlay. Defaults to 1.
        overlay_opacity (float, optional): Opacity of the overlay. Defaults to 1.0.
        title (str, optional): The title of the timelapse. Defaults to None.
        title_xy (tuple, optional): Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        add_text (bool, optional): Whether to add animated text to the timelapse. Defaults to True.
        title_xy (tuple, optional): Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        text_sequence (int, str, list, optional): Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.
        font_type (str, optional): Font type. Defaults to "arial.ttf".
        font_size (int, optional): Font size. Defaults to 20.
        font_color (str, optional): Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff').  Defaults to '#000000'.
        add_progress_bar (bool, optional): Whether to add a progress bar at the bottom of the GIF. Defaults to True.
        progress_bar_color (str, optional): Color for the progress bar. Defaults to 'white'.
        progress_bar_height (int, optional): Height of the progress bar. Defaults to 5.
        add_colorbar (bool, optional): Whether to add a colorbar to the timelapse. Defaults to False.
        colorbar_width (float, optional): Width of the colorbar. Defaults to 6.0.
        colorbar_height (float, optional): Height of the colorbar. Defaults to 0.4.
        colorbar_label (str, optional): Label for the colorbar. Defaults to None.
        colorbar_label_size (int, optional): Font size for the colorbar label. Defaults to 12.
        colorbar_label_weight (str, optional): Font weight for the colorbar label. Defaults to 'normal'.
        colorbar_tick_size (int, optional): Font size for the colorbar ticks. Defaults to 10.
        colorbar_bg_color (str, optional): Background color for the colorbar, can be color like "white", "black". Defaults to None.
        colorbar_orientation (str, optional): Orientation of the colorbar. Defaults to 'horizontal'.
        colorbar_dpi (str, optional): DPI for the colorbar, can be numbers like 100, 300. Defaults to 'figure'.
        colorbar_xy (tuple, optional): Lower left corner of the colorbar. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        colorbar_size (tuple, optional): Size of the colorbar. It can be formatted like this: (300, 300). Defaults to (300, 300).
        loop (int, optional): Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.
        mp4 (bool, optional): Whether to create an mp4 file. Defaults to False.
        fading (int | bool, optional): If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).
        **kwargs: Arguments for sentinel1_filtering(). Same filters will be applied to all bands.

    Returns:
        str: File path to the timelapse gif.
    """
    from datetime import date

    assert bands in (
        ["VV"],
        ["VH"],
        ["HH"],
        ["HV"],
        ["VV", "VH"],
        ["HH", "HV"],
        ["VH", "VV"],
        ["HV", "HH"],
    ), "Not all Sentinel1 bands are available together."
    if bands in (["VH", "VV"], ["HV", "HH"]):
        bands[0], bands[1] = bands[1], bands[0]
    band = bands[0]

    if end_year is None:
        end_year = date.today().year

    start = f"{start_year}-{start_date}"
    end = f"{end_year}-{end_date}"

    if vis_params is None:
        vis_params = {"min": -30, "max": 0}

    collection = (
        ee.ImageCollection("COPERNICUS/S1_GRD").filterDate(start, end).filterBounds(roi)
    )
    collection = sentinel1_filtering(collection, band, **kwargs)

    return create_timelapse(
        collection,
        start,
        end,
        roi,
        bands,
        frequency,
        reducer,
        date_format,
        out_gif,
        palette,
        vis_params,
        dimensions,
        frames_per_second,
        crs,
        overlay_data,
        overlay_color,
        overlay_width,
        overlay_opacity,
        title,
        title_xy,
        add_text,
        text_xy,
        text_sequence,
        font_type,
        font_size,
        font_color,
        add_progress_bar,
        progress_bar_color,
        progress_bar_height,
        add_colorbar,
        colorbar_width,
        colorbar_height,
        colorbar_label,
        colorbar_label_size,
        colorbar_label_weight,
        colorbar_tick_size,
        colorbar_bg_color,
        colorbar_orientation,
        colorbar_dpi,
        colorbar_xy,
        colorbar_size,
        loop,
        mp4,
        fading,
    )

sentinel1_timelapse_legacy(roi=None, out_gif=None, start_year=2015, end_year=None, start_date='01-01', end_date='12-31', vis_params=None, dimensions=768, frames_per_second=5, crs='EPSG:3857', overlay_data=None, overlay_color='black', overlay_width=1, overlay_opacity=1.0, frequency='year', title=None, title_xy=('2%', '90%'), add_text=True, text_xy=('2%', '2%'), text_sequence=None, font_type='arial.ttf', font_size=20, font_color='white', add_progress_bar=True, progress_bar_color='white', progress_bar_height=5, loop=0, mp4=False, fading=False)

Generates a Sentinel-1 timelapse animated GIF or MP4.

Parameters:

Name Type Description Default
roi object

Region of interest to create the timelapse. Defaults to LV & Lake Mead.

None
out_gif str

File path to the output animated GIF. Defaults to Downloads\s1_ts_*.gif.

None
start_year int

Starting year for the timelapse. Defaults to 2015.

2015
end_year int

Ending year for the timelapse. Defaults to current year.

None
start_date str

Starting date (month-day) each year for filtering ImageCollection. Defaults to '01-01'.

'01-01'
end_date str

Ending date (month-day) each year for filtering ImageCollection. Defaults to '12-31'.

'12-31'
vis_params dict

Visualization parameters. Defaults to {'min':-18, 'max': -4}.

None
dimensions int

a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.

768
frames_per_second int

Animation speed. Defaults to 5.

5
crs str

Coordinate reference system. Defaults to 'EPSG:3857'.

'EPSG:3857'
overlay_data int, str, list

Administrative boundary to be drawn on the timelapse. Defaults to None.

None
overlay_color str

Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.

'black'
overlay_width int

Line width of the overlay. Defaults to 1.

1
overlay_opacity float

Opacity of the overlay. Defaults to 1.0.

1.0
frequency str

Frequency of the timelapse. Defaults to 'year'. Can be year, quarter or month.

'year'
title str

The title of the timelapse. Defaults to None.

None
title_xy tuple

Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

('2%', '90%')
add_text bool

Whether to add animated text to the timelapse. Defaults to True.

True
title_xy tuple

Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

('2%', '90%')
text_sequence int, str, list

Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to image start dates.

None
font_type str

Font type. Defaults to "arial.ttf".

'arial.ttf'
font_size int

Font size. Defaults to 20.

20
font_color str

Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to 'white'.

'white'
add_progress_bar bool

Whether to add a progress bar at the bottom of the GIF. Defaults to True.

True
progress_bar_color str

Color for the progress bar. Defaults to 'white'.

'white'
progress_bar_height int

Height of the progress bar. Defaults to 5.

5
loop int

Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.

0
mp4 bool

Whether to convert the GIF to MP4. Defaults to False.

False
fading int | bool

If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).

False

Returns:

Type Description
str

File path to the output GIF image.

Source code in geemap/timelapse.py
def sentinel1_timelapse_legacy(
    roi=None,
    out_gif=None,
    start_year=2015,
    end_year=None,
    start_date="01-01",
    end_date="12-31",
    vis_params=None,
    dimensions=768,
    frames_per_second=5,
    crs="EPSG:3857",
    overlay_data=None,
    overlay_color="black",
    overlay_width=1,
    overlay_opacity=1.0,
    frequency="year",
    title=None,
    title_xy=("2%", "90%"),
    add_text=True,
    text_xy=("2%", "2%"),
    text_sequence=None,
    font_type="arial.ttf",
    font_size=20,
    font_color="white",
    add_progress_bar=True,
    progress_bar_color="white",
    progress_bar_height=5,
    loop=0,
    mp4=False,
    fading=False,
):
    """Generates a Sentinel-1 timelapse animated GIF or MP4.

    Args:
        roi (object, optional): Region of interest to create the timelapse. Defaults to LV & Lake Mead.
        out_gif (str, optional): File path to the output animated GIF. Defaults to Downloads\s1_ts_*.gif.
        start_year (int, optional): Starting year for the timelapse. Defaults to 2015.
        end_year (int, optional): Ending year for the timelapse. Defaults to current year.
        start_date (str, optional): Starting date (month-day) each year for filtering ImageCollection. Defaults to '01-01'.
        end_date (str, optional): Ending date (month-day) each year for filtering ImageCollection. Defaults to '12-31'.
        vis_params (dict, optional): Visualization parameters. Defaults to {'min':-18, 'max': -4}.
        dimensions (int, optional): a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.
        frames_per_second (int, optional): Animation speed. Defaults to 5.
        crs (str, optional): Coordinate reference system. Defaults to 'EPSG:3857'.
        overlay_data (int, str, list, optional): Administrative boundary to be drawn on the timelapse. Defaults to None.
        overlay_color (str, optional): Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.
        overlay_width (int, optional): Line width of the overlay. Defaults to 1.
        overlay_opacity (float, optional): Opacity of the overlay. Defaults to 1.0.
        frequency (str, optional): Frequency of the timelapse. Defaults to 'year'. Can be year, quarter or month.
        title (str, optional): The title of the timelapse. Defaults to None.
        title_xy (tuple, optional): Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        add_text (bool, optional): Whether to add animated text to the timelapse. Defaults to True.
        title_xy (tuple, optional): Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        text_sequence (int, str, list, optional): Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to image start dates.
        font_type (str, optional): Font type. Defaults to "arial.ttf".
        font_size (int, optional): Font size. Defaults to 20.
        font_color (str, optional): Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff').  Defaults to 'white'.
        add_progress_bar (bool, optional): Whether to add a progress bar at the bottom of the GIF. Defaults to True.
        progress_bar_color (str, optional): Color for the progress bar. Defaults to 'white'.
        progress_bar_height (int, optional): Height of the progress bar. Defaults to 5.
        loop (int, optional): Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.
        mp4 (bool, optional): Whether to convert the GIF to MP4. Defaults to False.
        fading (int | bool, optional): If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).

    Returns:
        str: File path to the output GIF image.
    """

    CURRENT_YEAR, ROI_DEFAULT = sentinel1_defaults()
    roi = roi or ROI_DEFAULT
    end_year = end_year or CURRENT_YEAR

    col = sentinel1_timeseries(
        roi=roi,
        start_year=start_year,
        end_year=end_year,
        start_date=start_date,
        end_date=end_date,
        frequency=frequency,
        clip=True,
    )

    vis_params = vis_params or {"min": -25, "max": 5}

    if out_gif is None:
        out_dir = os.path.join(os.path.expanduser("~"), "Downloads")
        filename = "s1_ts_" + random_string() + ".gif"
        out_gif = os.path.join(out_dir, filename)
    elif not out_gif.endswith(".gif"):
        print("The output file must end with .gif")
        return
    else:
        out_gif = os.path.abspath(out_gif)
        out_dir = os.path.dirname(out_gif)

    if not os.path.exists(out_dir):
        os.makedirs(out_dir)

    if overlay_data is not None:
        col = add_overlay(
            col, overlay_data, overlay_color, overlay_width, overlay_opacity
        )

    if (
        isinstance(dimensions, int)
        and dimensions > 768
        or isinstance(dimensions, str)
        and any(dim > 768 for dim in list(map(int, dimensions.split("x"))))
    ):
        count = col.size().getInfo()
        basename = os.path.basename(out_gif)[:-4]
        names = [
            os.path.join(
                out_dir, f"{basename}_{str(i+1).zfill(int(len(str(count))))}.jpg"
            )
            for i in range(count)
        ]
        get_image_collection_thumbnails(
            col,
            out_dir,
            vis_params=vis_params,
            dimensions=dimensions,
            names=names,
        )
        make_gif(
            names,
            out_gif,
            fps=frames_per_second,
            loop=loop,
            mp4=False,
            clean_up=True,
        )
    else:
        video_args = vis_params.copy()
        video_args["dimensions"] = dimensions
        video_args["region"] = roi
        video_args["framesPerSecond"] = frames_per_second
        video_args["crs"] = crs
        video_args["min"] = vis_params["min"]
        video_args["max"] = vis_params["max"]

        download_ee_video(col, video_args, out_gif)

    if os.path.exists(out_gif):
        if title is not None and isinstance(title, str):
            add_text_to_gif(
                out_gif,
                out_gif,
                xy=title_xy,
                text_sequence=title,
                font_type=font_type,
                font_size=font_size,
                font_color=font_color,
                add_progress_bar=add_progress_bar,
                progress_bar_color=progress_bar_color,
                progress_bar_height=progress_bar_height,
                duration=1000 / frames_per_second,
                loop=loop,
            )
        if add_text:
            if text_sequence is None:
                text_sequence = col.aggregate_array("system:date").getInfo()
            add_text_to_gif(
                out_gif,
                out_gif,
                xy=text_xy,
                text_sequence=text_sequence,
                font_type=font_type,
                font_size=font_size,
                font_color=font_color,
                add_progress_bar=add_progress_bar,
                progress_bar_color=progress_bar_color,
                progress_bar_height=progress_bar_height,
                duration=1000 / frames_per_second,
                loop=loop,
            )
        if os.path.exists(out_gif):
            reduce_gif_size(out_gif)
        if isinstance(fading, bool):
            fading = int(fading)
        if fading > 0:
            gif_fading(out_gif, out_gif, duration=fading, verbose=False)
        if mp4:
            out_mp4 = out_gif.replace(".gif", ".mp4")
            gif_to_mp4(out_gif, out_mp4)

    return out_gif

sentinel1_timeseries(roi=None, start_year=2015, end_year=None, start_date='01-01', end_date='12-31', frequency='year', clip=False, band='VV', **kwargs)

1
2
Generates a Sentinel 1 ImageCollection,
based on mean composites following a steady frequency (f.e. 1 image per month)

Adapted from https://code.earthengine.google.com/?scriptPath=Examples:Datasets/COPERNICUS_S1_GRD

Parameters:

Name Type Description Default
roi object

Region of interest to create the timelapse. Defaults to a polygon partially covering Las Vegas and Lake Mead.

None
start_year int

Starting year for the timelapse. Defaults to 2015.

2015
end_year int

Ending year for the timelapse. Defaults to current year.

None
start_date str

Starting date (month-day) each year for filtering ImageCollection. Defaults to '01-01'.

'01-01'
end_date str

Ending date (month-day) each year for filtering ImageCollection. Defaults to '12-31'.

'12-31'
frequency str

Frequency of the timelapse. Defaults to 'year'. Can be 'year', 'quarter' or 'month'.

'year'
band str

Collection band. Can be one of ['HH','HV','VV','VH']. Defaults to 'VV' which is most commonly available on land.

'VV'
**kwargs

Arguments for sentinel1_filtering().

{}

Returns:

Type Description
object

Returns an ImageCollection of Sentinel 1 images.

Source code in geemap/timelapse.py
def sentinel1_timeseries(
    roi=None,
    start_year=2015,
    end_year=None,
    start_date="01-01",
    end_date="12-31",
    frequency="year",
    clip=False,
    band="VV",
    **kwargs,
):
    """
        Generates a Sentinel 1 ImageCollection,
        based on mean composites following a steady frequency (f.e. 1 image per month)
    Adapted from https://code.earthengine.google.com/?scriptPath=Examples:Datasets/COPERNICUS_S1_GRD

    Args:
        roi (object, optional): Region of interest to create the timelapse. Defaults to a polygon partially covering Las Vegas and Lake Mead.
        start_year (int, optional): Starting year for the timelapse. Defaults to 2015.
        end_year (int, optional): Ending year for the timelapse. Defaults to current year.
        start_date (str, optional): Starting date (month-day) each year for filtering ImageCollection. Defaults to '01-01'.
        end_date (str, optional): Ending date (month-day) each year for filtering ImageCollection. Defaults to '12-31'.
        frequency (str, optional): Frequency of the timelapse. Defaults to 'year'.  Can be 'year', 'quarter' or 'month'.
        band (str): Collection band. Can be one of ['HH','HV','VV','VH']. Defaults to 'VV' which is most commonly available on land.
        **kwargs: Arguments for sentinel1_filtering().

    Returns:
        object: Returns an ImageCollection of Sentinel 1 images.
    """

    CURRENT_YEAR, ROI_DEFAULT = sentinel1_defaults()
    roi = roi or ROI_DEFAULT
    end_year = end_year or CURRENT_YEAR
    roi = valid_roi(roi)

    start = f"{start_year}-{start_date}"
    end = f"{end_year}-{end_date}"

    dates = date_sequence(start, end, frequency)
    col = ee.ImageCollection("COPERNICUS/S1_GRD").filterBounds(roi)
    col = sentinel1_filtering(col, band=band, **kwargs).select(band)

    n = 1
    if frequency == "quarter":
        n = 3
        frequency = "month"

    def transform(date):  # coll, frequency
        start = date
        end = ee.Date(date).advance(n, frequency).advance(-1, "day")
        return (
            col.filterDate(start, end)
            .mean()
            .set(
                {
                    "system:time_start": ee.Date(start).millis(),
                    "system:time_end": ee.Date(end).millis(),
                    "system:date": start,
                }
            )
        )

    imgList = dates.map(lambda date: transform(date))
    imgColl = ee.ImageCollection.fromImages(imgList)
    if clip:
        imgColl = imgColl.map(lambda img: img.clip(roi))
    return imgColl

sentinel2_timelapse(roi=None, out_gif=None, start_year=2015, end_year=None, start_date='06-10', end_date='09-20', bands=['NIR', 'Red', 'Green'], vis_params=None, dimensions=768, frames_per_second=5, crs='EPSG:3857', apply_fmask=True, cloud_pct=30, overlay_data=None, overlay_color='black', overlay_width=1, overlay_opacity=1.0, frequency='year', date_format=None, title=None, title_xy=('2%', '90%'), add_text=True, text_xy=('2%', '2%'), text_sequence=None, font_type='arial.ttf', font_size=20, font_color='white', add_progress_bar=True, progress_bar_color='white', progress_bar_height=5, loop=0, mp4=False, fading=False, step=1, **kwargs)

Generates a Sentinel-2 timelapse GIF image. This function is adapted from https://emaprlab.users.earthengine.app/view/lt-gee-time-series-animator. A huge thank you to Justin Braaten for sharing his fantastic work.

Parameters:

Name Type Description Default
roi object

Region of interest to create the timelapse. Defaults to None.

None
out_gif str

File path to the output animated GIF. Defaults to None.

None
start_year int

Starting year for the timelapse. Defaults to 2015.

2015
end_year int

Ending year for the timelapse. Defaults to None, which means the current year.

None
start_date str

Starting date (month-day) each year for filtering ImageCollection. Defaults to '06-10'.

'06-10'
end_date str

Ending date (month-day) each year for filtering ImageCollection. Defaults to '09-20'.

'09-20'
bands list

Three bands selected from ['Blue', 'Green', 'Red', 'NIR', 'SWIR1', 'SWIR2', 'Red Edge 1', 'Red Edge 2', 'Red Edge 3', 'Red Edge 4']. Defaults to ['NIR', 'Red', 'Green'].

['NIR', 'Red', 'Green']
vis_params dict

Visualization parameters. Defaults to None.

None
dimensions int

a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.

768
frames_per_second int

Animation speed. Defaults to 10.

5
crs str

Coordinate reference system. Defaults to 'EPSG:3857'.

'EPSG:3857'
apply_fmask bool

Whether to apply Fmask (Function of mask) for automated clouds, cloud shadows, snow, and water masking.

True
cloud_pct int

Maximum percentage of cloud coverage allowed. Defaults to 30.

30
overlay_data int, str, list

Administrative boundary to be drawn on the timelapse. Defaults to None.

None
overlay_color str

Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.

'black'
overlay_width int

Line width of the overlay. Defaults to 1.

1
overlay_opacity float

Opacity of the overlay. Defaults to 1.0.

1.0
frequency str

Frequency of the timelapse. Defaults to 'year'.

'year'
date_format str

Date format for the timelapse. Defaults to None.

None
title str

The title of the timelapse. Defaults to None.

None
title_xy tuple

Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

('2%', '90%')
add_text bool

Whether to add animated text to the timelapse. Defaults to True.

True
title_xy tuple

Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.

('2%', '90%')
text_sequence int, str, list

Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.

None
font_type str

Font type. Defaults to "arial.ttf".

'arial.ttf'
font_size int

Font size. Defaults to 20.

20
font_color str

Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff'). Defaults to '#000000'.

'white'
add_progress_bar bool

Whether to add a progress bar at the bottom of the GIF. Defaults to True.

True
progress_bar_color str

Color for the progress bar. Defaults to 'white'.

'white'
progress_bar_height int

Height of the progress bar. Defaults to 5.

5
loop int

Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.

0
mp4 bool

Whether to convert the GIF to MP4. Defaults to False.

False
fading int | bool

If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).

False
step int

Step size for selecting images. Defaults to 1.

1
kwargs optional

Additional arguments to pass the geemap.create_timeseries() function.

{}

Returns:

Type Description
str

File path to the output GIF image.

Source code in geemap/timelapse.py
def sentinel2_timelapse(
    roi=None,
    out_gif=None,
    start_year=2015,
    end_year=None,
    start_date="06-10",
    end_date="09-20",
    bands=["NIR", "Red", "Green"],
    vis_params=None,
    dimensions=768,
    frames_per_second=5,
    crs="EPSG:3857",
    apply_fmask=True,
    cloud_pct=30,
    overlay_data=None,
    overlay_color="black",
    overlay_width=1,
    overlay_opacity=1.0,
    frequency="year",
    date_format=None,
    title=None,
    title_xy=("2%", "90%"),
    add_text=True,
    text_xy=("2%", "2%"),
    text_sequence=None,
    font_type="arial.ttf",
    font_size=20,
    font_color="white",
    add_progress_bar=True,
    progress_bar_color="white",
    progress_bar_height=5,
    loop=0,
    mp4=False,
    fading=False,
    step=1,
    **kwargs,
):
    """Generates a Sentinel-2 timelapse GIF image. This function is adapted from https://emaprlab.users.earthengine.app/view/lt-gee-time-series-animator. A huge thank you to Justin Braaten for sharing his fantastic work.

    Args:
        roi (object, optional): Region of interest to create the timelapse. Defaults to None.
        out_gif (str, optional): File path to the output animated GIF. Defaults to None.
        start_year (int, optional): Starting year for the timelapse. Defaults to 2015.
        end_year (int, optional): Ending year for the timelapse. Defaults to None, which means the current year.
        start_date (str, optional): Starting date (month-day) each year for filtering ImageCollection. Defaults to '06-10'.
        end_date (str, optional): Ending date (month-day) each year for filtering ImageCollection. Defaults to '09-20'.
        bands (list, optional): Three bands selected from ['Blue', 'Green', 'Red', 'NIR', 'SWIR1', 'SWIR2', 'Red Edge 1', 'Red Edge 2', 'Red Edge 3', 'Red Edge 4']. Defaults to ['NIR', 'Red', 'Green'].
        vis_params (dict, optional): Visualization parameters. Defaults to None.
        dimensions (int, optional): a number or pair of numbers (in format 'WIDTHxHEIGHT') Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.
        frames_per_second (int, optional): Animation speed. Defaults to 10.
        crs (str, optional): Coordinate reference system. Defaults to 'EPSG:3857'.
        apply_fmask (bool, optional): Whether to apply Fmask (Function of mask) for automated clouds, cloud shadows, snow, and water masking.
        cloud_pct (int, optional): Maximum percentage of cloud coverage allowed. Defaults to 30.
        overlay_data (int, str, list, optional): Administrative boundary to be drawn on the timelapse. Defaults to None.
        overlay_color (str, optional): Color for the overlay data. Can be any color name or hex color code. Defaults to 'black'.
        overlay_width (int, optional): Line width of the overlay. Defaults to 1.
        overlay_opacity (float, optional): Opacity of the overlay. Defaults to 1.0.
        frequency (str, optional): Frequency of the timelapse. Defaults to 'year'.
        date_format (str, optional): Date format for the timelapse. Defaults to None.
        title (str, optional): The title of the timelapse. Defaults to None.
        title_xy (tuple, optional): Lower left corner of the title. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        add_text (bool, optional): Whether to add animated text to the timelapse. Defaults to True.
        title_xy (tuple, optional): Lower left corner of the text sequency. It can be formatted like this: (10, 10) or ('15%', '25%'). Defaults to None.
        text_sequence (int, str, list, optional): Text to be drawn. It can be an integer number, a string, or a list of strings. Defaults to None.
        font_type (str, optional): Font type. Defaults to "arial.ttf".
        font_size (int, optional): Font size. Defaults to 20.
        font_color (str, optional): Font color. It can be a string (e.g., 'red'), rgb tuple (e.g., (255, 127, 0)), or hex code (e.g., '#ff00ff').  Defaults to '#000000'.
        add_progress_bar (bool, optional): Whether to add a progress bar at the bottom of the GIF. Defaults to True.
        progress_bar_color (str, optional): Color for the progress bar. Defaults to 'white'.
        progress_bar_height (int, optional): Height of the progress bar. Defaults to 5.
        loop (int, optional): Controls how many times the animation repeats. The default, 1, means that the animation will play once and then stop (displaying the last frame). A value of 0 means that the animation will repeat forever. Defaults to 0.
        mp4 (bool, optional): Whether to convert the GIF to MP4. Defaults to False.
        fading (int | bool, optional): If True, add fading effect to the timelapse. Defaults to False, no fading. To add fading effect, set it to True (1 second fading duration) or to an integer value (fading duration).
        step (int, optional): Step size for selecting images. Defaults to 1.
        kwargs (optional): Additional arguments to pass the geemap.create_timeseries() function.

    Returns:
        str: File path to the output GIF image.
    """

    if end_year is None:
        end_year = datetime.datetime.now().year

    if roi is None:
        roi = ee.Geometry.Polygon(
            [
                [
                    [-115.471773, 35.892718],
                    [-115.471773, 36.409454],
                    [-114.271283, 36.409454],
                    [-114.271283, 35.892718],
                    [-115.471773, 35.892718],
                ]
            ],
            None,
            False,
        )
    elif isinstance(roi, ee.Feature) or isinstance(roi, ee.FeatureCollection):
        roi = roi.geometry()
    elif isinstance(roi, ee.Geometry):
        pass
    else:
        print("The provided roi is invalid. It must be an ee.Geometry")
        return

    if out_gif is None:
        out_dir = os.path.join(os.path.expanduser("~"), "Downloads")
        filename = "s2_ts_" + random_string() + ".gif"
        out_gif = os.path.join(out_dir, filename)
    elif not out_gif.endswith(".gif"):
        print("The output file must end with .gif")
        return
    else:
        out_gif = os.path.abspath(out_gif)
        out_dir = os.path.dirname(out_gif)

    if not os.path.exists(out_dir):
        os.makedirs(out_dir)

    allowed_bands = {
        "Blue": "B2",
        "Green": "B3",
        "Red": "B4",
        "Red Edge 1": "B5",
        "Red Edge 2": "B6",
        "Red Edge 3": "B7",
        "NIR": "B8",
        "Red Edge 4": "B8A",
        "SWIR1": "B11",
        "SWIR2": "B12",
        "QA60": "QA60",
    }

    if bands is None:
        bands = ["SWIR1", "NIR", "Red"]

    for index, band in enumerate(bands):
        if band in allowed_bands:
            bands[index] = allowed_bands[band]

    if len(bands) == 3:
        pass
    else:
        raise Exception(
            "You can only select 3 bands from the following: {}".format(
                ", ".join(allowed_bands)
            )
        )

    try:
        if vis_params is None:
            vis_params = {}
            vis_params["bands"] = bands
            vis_params["min"] = 0
            vis_params["max"] = 0.4
            vis_params["gamma"] = [1, 1, 1]

        if "reducer" not in kwargs:
            kwargs["reducer"] = "median"
        if "drop_empty" not in kwargs:
            kwargs["drop_empty"] = True
        if "parallel_scale" not in kwargs:
            kwargs["parallel_scale"] = 1
        kwargs["date_format"] = date_format
        col = sentinel2_timeseries(
            roi,
            start_year,
            end_year,
            start_date,
            end_date,
            bands,
            apply_fmask,
            cloud_pct,
            frequency,
            step=step,
            **kwargs,
        )
        col = col.select(bands).map(
            lambda img: img.visualize(**vis_params).set(
                {
                    "system:time_start": img.get("system:time_start"),
                    "system:date": img.get("system:date"),
                }
            )
        )
        if overlay_data is not None:
            col = add_overlay(
                col, overlay_data, overlay_color, overlay_width, overlay_opacity
            )

        if (
            isinstance(dimensions, int)
            and dimensions > 768
            or isinstance(dimensions, str)
            and any(dim > 768 for dim in list(map(int, dimensions.split("x"))))
        ):
            count = col.size().getInfo()
            basename = os.path.basename(out_gif)[:-4]
            names = [
                os.path.join(
                    out_dir, f"{basename}_{str(i+1).zfill(int(len(str(count))))}.jpg"
                )
                for i in range(count)
            ]
            get_image_collection_thumbnails(
                col,
                out_dir,
                vis_params={
                    "min": 0,
                    "max": 255,
                    "bands": ["vis-red", "vis-green", "vis-blue"],
                },
                dimensions=dimensions,
                names=names,
            )
            make_gif(
                names,
                out_gif,
                fps=frames_per_second,
                loop=loop,
                mp4=False,
                clean_up=True,
            )
        else:
            video_args = vis_params.copy()
            video_args["dimensions"] = dimensions
            video_args["region"] = roi
            video_args["framesPerSecond"] = frames_per_second
            video_args["crs"] = crs
            video_args["bands"] = ["vis-red", "vis-green", "vis-blue"]
            video_args["min"] = 0
            video_args["max"] = 255

            download_ee_video(col, video_args, out_gif)

        if os.path.exists(out_gif):
            if title is not None and isinstance(title, str):
                add_text_to_gif(
                    out_gif,
                    out_gif,
                    xy=title_xy,
                    text_sequence=title,
                    font_type=font_type,
                    font_size=font_size,
                    font_color=font_color,
                    add_progress_bar=add_progress_bar,
                    progress_bar_color=progress_bar_color,
                    progress_bar_height=progress_bar_height,
                    duration=1000 / frames_per_second,
                    loop=loop,
                )
            if add_text:
                if text_sequence is None:
                    text_sequence = col.aggregate_array("system:date").getInfo()
                add_text_to_gif(
                    out_gif,
                    out_gif,
                    xy=text_xy,
                    text_sequence=text_sequence,
                    font_type=font_type,
                    font_size=font_size,
                    font_color=font_color,
                    add_progress_bar=add_progress_bar,
                    progress_bar_color=progress_bar_color,
                    progress_bar_height=progress_bar_height,
                    duration=1000 / frames_per_second,
                    loop=loop,
                )

        if os.path.exists(out_gif):
            reduce_gif_size(out_gif)

        if isinstance(fading, bool):
            fading = int(fading)
        if fading > 0:
            gif_fading(out_gif, out_gif, duration=fading, verbose=False)

        if mp4:
            out_mp4 = out_gif.replace(".gif", ".mp4")
            gif_to_mp4(out_gif, out_mp4)

        return out_gif

    except Exception as e:
        print(e)

sentinel2_timeseries(roi, start_year=2015, end_year=None, start_date='01-01', end_date='12-31', bands=None, mask_cloud=True, cloud_pct=30, frequency='year', reducer='median', drop_empty=True, date_format=None, parallel_scale=1, step=1)

Generates an annual Sentinel 2 ImageCollection. This algorithm is adapted from https://gist.github.com/jdbcode/76b9ac49faf51627ebd3ff988e10adbc. A huge thank you to Justin Braaten for sharing his fantastic work. Images include both level 1C and level 2A imagery.

Parameters:

Name Type Description Default
roi object

Region of interest to create the timelapse. Defaults to None.

required
start_year int

Starting year for the timelapse. Defaults to 2015.

2015
end_year int

Ending year for the timelapse. Defaults to None, which will use the current year.

None
start_date str

Starting date (month-day) each year for filtering ImageCollection. Defaults to '01-01'.

'01-01'
mask_cloud bool

Whether to mask clouds. Defaults to True.

True
end_date str

Ending date (month-day) each year for filtering ImageCollection. Defaults to '12-31'.

'12-31'
bands list

The list of bands to use to create the timeseries. It must be a list of strings. Defaults to None.

None
cloud_pct int

Maximum cloud percentage to include in the timelapse. Defaults to 30.

30
frequency str

Frequency of the timelapse. Defaults to 'year'.

'year'
reducer str

The reducer to use to reduce the collection of images to a single value. It can be one of the following: 'median', 'mean', 'min', 'max', 'variance', 'sum'. Defaults to 'median'.

'median'
drop_empty bool

Whether to drop empty images from the timeseries. Defaults to True.

True
date_format str

Format of the date. Defaults to None.

None
parallel_scale int

A scaling factor used to limit memory use; using a larger parallel_scale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1.

1
step int

The step size to use when creating the date sequence. Defaults to 1.

1

Returns:

Type Description
object

Returns an ImageCollection containing annual Sentinel 2 images.

Source code in geemap/timelapse.py
def sentinel2_timeseries(
    roi,
    start_year=2015,
    end_year=None,
    start_date="01-01",
    end_date="12-31",
    bands=None,
    mask_cloud=True,
    cloud_pct=30,
    frequency="year",
    reducer="median",
    drop_empty=True,
    date_format=None,
    parallel_scale=1,
    step=1,
):
    """Generates an annual Sentinel 2 ImageCollection. This algorithm is adapted from https://gist.github.com/jdbcode/76b9ac49faf51627ebd3ff988e10adbc. A huge thank you to Justin Braaten for sharing his fantastic work.
       Images include both level 1C and level 2A imagery.
    Args:

        roi (object, optional): Region of interest to create the timelapse. Defaults to None.
        start_year (int, optional): Starting year for the timelapse. Defaults to 2015.
        end_year (int, optional): Ending year for the timelapse. Defaults to None, which will use the current year.
        start_date (str, optional): Starting date (month-day) each year for filtering ImageCollection. Defaults to '01-01'.
        mask_cloud (bool, optional): Whether to mask clouds. Defaults to True.
        end_date (str, optional): Ending date (month-day) each year for filtering ImageCollection. Defaults to '12-31'.
        bands (list, optional): The list of bands to use to create the timeseries. It must be a list of strings. Defaults to None.
        cloud_pct (int, optional): Maximum cloud percentage to include in the timelapse. Defaults to 30.
        frequency (str, optional): Frequency of the timelapse. Defaults to 'year'.
        reducer (str, optional):  The reducer to use to reduce the collection of images to a single value. It can be one of the following: 'median', 'mean', 'min', 'max', 'variance', 'sum'. Defaults to 'median'.
        drop_empty (bool, optional): Whether to drop empty images from the timeseries. Defaults to True.
        date_format (str, optional): Format of the date. Defaults to None.
        parallel_scale (int, optional): A scaling factor used to limit memory use; using a larger parallel_scale (e.g. 2 or 4) may enable computations that run out of memory with the default. Defaults to 1.
        step (int, optional): The step size to use when creating the date sequence. Defaults to 1.

    Returns:
        object: Returns an ImageCollection containing annual Sentinel 2 images.
    """
    if end_year is None:
        end_year = datetime.date.today().year

    def maskS2clouds(image):
        qa = image.select("QA60")

        # Bits 10 and 11 are clouds and cirrus, respectively.
        cloudBitMask = 1 << 10
        cirrusBitMask = 1 << 11

        # Both flags should be set to zero, indicating clear conditions.
        mask = qa.bitwiseAnd(cloudBitMask).eq(0).And(qa.bitwiseAnd(cirrusBitMask).eq(0))

        return (
            image.updateMask(mask)
            .divide(10000)
            .set(image.toDictionary(image.propertyNames()))
        )

    start = f"{start_year}-{start_date}"
    end = f"{end_year}-{end_date}"
    doy_start = ee.Number.parse(ee.Date(start).format("D"))
    doy_end = ee.Number.parse(ee.Date(end).format("D"))
    collection = (
        ee.ImageCollection("COPERNICUS/S2_HARMONIZED")
        .filterDate(start, end)
        .filter(ee.Filter.calendarRange(doy_start, doy_end, "day_of_year"))
        .filter(ee.Filter.lt("CLOUDY_PIXEL_PERCENTAGE", cloud_pct))
        .filterBounds(roi)
    )

    if mask_cloud:
        collection = collection.map(maskS2clouds)
    else:
        collection = collection.map(
            lambda img: img.divide(10000).set(img.toDictionary(img.propertyNames()))
        )

    if bands is not None:
        allowed_bands = {
            "Blue": "B2",
            "Green": "B3",
            "Red": "B4",
            "Red Edge 1": "B5",
            "Red Edge 2": "B6",
            "Red Edge 3": "B7",
            "NIR": "B8",
            "Red Edge 4": "B8A",
            "SWIR1": "B11",
            "SWIR2": "B12",
            "QA60": "QA60",
        }

        for index, band in enumerate(bands):
            if band in allowed_bands:
                bands[index] = allowed_bands[band]

        collection = collection.select(bands)

    ts = create_timeseries(
        collection,
        start,
        end,
        roi,
        bands,
        frequency,
        reducer,
        drop_empty,
        date_format,
        parallel_scale,
        step,
    )
    return ts

sentinel2_timeseries_legacy(roi=None, start_year=2015, end_year=None, start_date='01-01', end_date='12-31', apply_fmask=True, frequency='year', date_format=None)

Generates an annual Sentinel 2 ImageCollection. This algorithm is adapted from https://gist.github.com/jdbcode/76b9ac49faf51627ebd3ff988e10adbc. A huge thank you to Justin Braaten for sharing his fantastic work. Images include both level 1C and level 2A imagery.

Parameters:

Name Type Description Default
roi object

Region of interest to create the timelapse. Defaults to None.

None
start_year int

Starting year for the timelapse. Defaults to 2015.

2015
end_year int

Ending year for the timelapse. Defaults to None, which will use the current year.

None
start_date str

Starting date (month-day) each year for filtering ImageCollection. Defaults to '01-01'.

'01-01'
end_date str

Ending date (month-day) each year for filtering ImageCollection. Defaults to '12-31'.

'12-31'
apply_fmask bool

Whether to apply Fmask (Function of mask) for automated clouds, cloud shadows, snow, and water masking.

True
frequency str

Frequency of the timelapse. Defaults to 'year'.

'year'
date_format str

Format of the date. Defaults to None.

None

Returns:

Type Description
object

Returns an ImageCollection containing annual Sentinel 2 images.

Source code in geemap/timelapse.py
def sentinel2_timeseries_legacy(
    roi=None,
    start_year=2015,
    end_year=None,
    start_date="01-01",
    end_date="12-31",
    apply_fmask=True,
    frequency="year",
    date_format=None,
):
    """Generates an annual Sentinel 2 ImageCollection. This algorithm is adapted from https://gist.github.com/jdbcode/76b9ac49faf51627ebd3ff988e10adbc. A huge thank you to Justin Braaten for sharing his fantastic work.
       Images include both level 1C and level 2A imagery.
    Args:

        roi (object, optional): Region of interest to create the timelapse. Defaults to None.
        start_year (int, optional): Starting year for the timelapse. Defaults to 2015.
        end_year (int, optional): Ending year for the timelapse. Defaults to None, which will use the current year.
        start_date (str, optional): Starting date (month-day) each year for filtering ImageCollection. Defaults to '01-01'.
        end_date (str, optional): Ending date (month-day) each year for filtering ImageCollection. Defaults to '12-31'.
        apply_fmask (bool, optional): Whether to apply Fmask (Function of mask) for automated clouds, cloud shadows, snow, and water masking.
        frequency (str, optional): Frequency of the timelapse. Defaults to 'year'.
        date_format (str, optional): Format of the date. Defaults to None.

    Returns:
        object: Returns an ImageCollection containing annual Sentinel 2 images.
    """
    ################################################################################

    ################################################################################
    # Input and output parameters.

    import re

    # import datetime

    if end_year is None:
        end_year = datetime.date.today().year

    if roi is None:
        # roi = ee.Geometry.Polygon(
        #     [[[-180, -80],
        #       [-180, 80],
        #         [180, 80],
        #         [180, -80],
        #         [-180, -80]]], None, False)
        roi = ee.Geometry.Polygon(
            [
                [
                    [-115.471773, 35.892718],
                    [-115.471773, 36.409454],
                    [-114.271283, 36.409454],
                    [-114.271283, 35.892718],
                    [-115.471773, 35.892718],
                ]
            ],
            None,
            False,
        )

    if not isinstance(roi, ee.Geometry):
        try:
            roi = roi.geometry()
        except Exception as e:
            print("Could not convert the provided roi to ee.Geometry")
            print(e)
            return

    # Adjusts longitudes less than -180 degrees or greater than 180 degrees.
    geojson = ee_to_geojson(roi)
    geojson = adjust_longitude(geojson)
    roi = ee.Geometry(geojson)

    feq_dict = {
        "year": "YYYY",
        "month": "YYYY-MM",
        "quarter": "YYYY-MM",
    }

    if date_format is None:
        date_format = feq_dict[frequency]

    if frequency not in feq_dict:
        raise ValueError("frequency must be year, quarter, or month.")

    ################################################################################
    # Setup vars to get dates.
    if (
        isinstance(start_year, int)
        and (start_year >= 2015)
        and (start_year <= get_current_year())
    ):
        pass
    else:
        print("The start year must be an integer >= 2015.")
        return

    if (
        isinstance(end_year, int)
        and (end_year >= 2015)
        and (end_year <= get_current_year())
    ):
        pass
    else:
        print(f"The end year must be an integer <= {get_current_year()}.")
        return

    if re.match(r"[0-9]{2}-[0-9]{2}", start_date) and re.match(
        r"[0-9]{2}-[0-9]{2}", end_date
    ):
        pass
    else:
        print("The start data and end date must be month-day, such as 06-10, 09-20")
        return

    try:
        datetime.datetime(int(start_year), int(start_date[:2]), int(start_date[3:5]))
        datetime.datetime(int(end_year), int(end_date[:2]), int(end_date[3:5]))
    except Exception as e:
        raise ValueError("The input dates are invalid.")

    try:
        start_test = datetime.datetime(
            int(start_year), int(start_date[:2]), int(start_date[3:5])
        )
        end_test = datetime.datetime(
            int(end_year), int(end_date[:2]), int(end_date[3:5])
        )
        if start_test > end_test:
            raise ValueError("Start date must be prior to end date")
    except Exception as e:
        raise Exception(e)

    def days_between(d1, d2):
        d1 = datetime.datetime.strptime(d1, "%Y-%m-%d")
        d2 = datetime.datetime.strptime(d2, "%Y-%m-%d")
        return abs((d2 - d1).days)

    n_days = days_between(
        str(start_year) + "-" + start_date, str(start_year) + "-" + end_date
    )
    start_month = int(start_date[:2])
    start_day = int(start_date[3:5])
    # start_date = str(start_year) + "-" + start_date
    # end_date = str(end_year) + "-" + end_date

    # # Define a collection filter by date, bounds, and quality.
    # def colFilter(col, aoi):  # , startDate, endDate):
    #     return(col.filterBounds(aoi))

    # Get Sentinel 2 collections, both Level-1C (top of atmophere) and Level-2A (surface reflectance)
    MSILCcol = ee.ImageCollection("COPERNICUS/S2")
    MSI2Acol = ee.ImageCollection("COPERNICUS/S2_SR")

    # Define a collection filter by date, bounds, and quality.
    def colFilter(col, roi, start_date, end_date):
        return col.filterBounds(roi).filterDate(start_date, end_date)
        # .filter('CLOUD_COVER < 5')
        # .filter('GEOMETRIC_RMSE_MODEL < 15')
        # .filter('IMAGE_QUALITY == 9 || IMAGE_QUALITY_OLI == 9'))

    # Function to get and rename bands of interest from MSI
    def renameMSI(img):
        return img.select(
            ["B2", "B3", "B4", "B5", "B6", "B7", "B8", "B8A", "B11", "B12", "QA60"],
            [
                "Blue",
                "Green",
                "Red",
                "Red Edge 1",
                "Red Edge 2",
                "Red Edge 3",
                "NIR",
                "Red Edge 4",
                "SWIR1",
                "SWIR2",
                "QA60",
            ],
        )

    # Add NBR for LandTrendr segmentation.

    def calcNbr(img):
        return img.addBands(
            img.normalizedDifference(["NIR", "SWIR2"]).multiply(-10000).rename("NBR")
        ).int16()

    # Define function to mask out clouds and cloud shadows in images.
    # Use CFmask band included in USGS Landsat SR image product.

    def fmask(img):
        cloudOpaqueBitMask = 1 << 10
        cloudCirrusBitMask = 1 << 11
        qa = img.select("QA60")
        mask = (
            qa.bitwiseAnd(cloudOpaqueBitMask)
            .eq(0)
            .And(qa.bitwiseAnd(cloudCirrusBitMask).eq(0))
        )
        return img.updateMask(mask)

    # Define function to prepare MSI images.
    def prepMSI(img):
        orig = img
        img = renameMSI(img)
        if apply_fmask:
            img = fmask(img)
        return ee.Image(img.copyProperties(orig, orig.propertyNames())).resample(
            "bicubic"
        )

    # Get annual median collection.
    def getAnnualComp(y):
        startDate = ee.Date.fromYMD(
            ee.Number(y), ee.Number(start_month), ee.Number(start_day)
        )
        endDate = startDate.advance(ee.Number(n_days), "day")

        # Filter collections and prepare them for merging.
        MSILCcoly = colFilter(MSILCcol, roi, startDate, endDate).map(prepMSI)
        MSI2Acoly = colFilter(MSI2Acol, roi, startDate, endDate).map(prepMSI)

        # Merge the collections.
        col = MSILCcoly.merge(MSI2Acoly)

        yearImg = col.median()
        nBands = yearImg.bandNames().size()
        yearImg = ee.Image(ee.Algorithms.If(nBands, yearImg, dummyImg))
        return calcNbr(yearImg).set(
            {
                "year": y,
                "system:time_start": startDate.millis(),
                "nBands": nBands,
                "system:date": ee.Date(startDate).format(date_format),
            }
        )

    # Get quarterly median collection.
    def getQuarterlyComp(startDate):
        startDate = ee.Date(startDate)
        endDate = startDate.advance(3, "month")

        # Filter collections and prepare them for merging.
        MSILCcoly = colFilter(MSILCcol, roi, startDate, endDate).map(prepMSI)
        MSI2Acoly = colFilter(MSI2Acol, roi, startDate, endDate).map(prepMSI)

        # Merge the collections.
        col = MSILCcoly.merge(MSI2Acoly)

        yearImg = col.median()
        nBands = yearImg.bandNames().size()
        yearImg = ee.Image(ee.Algorithms.If(nBands, yearImg, dummyImg))
        return calcNbr(yearImg).set(
            {
                "system:time_start": startDate.millis(),
                "nBands": nBands,
                "system:date": ee.Date(startDate).format(date_format),
            }
        )

    # Get monthly median collection.
    def getMonthlyComp(startDate):
        startDate = ee.Date(startDate)
        endDate = startDate.advance(1, "month")

        # Filter collections and prepare them for merging.
        MSILCcoly = colFilter(MSILCcol, roi, startDate, endDate).map(prepMSI)
        MSI2Acoly = colFilter(MSI2Acol, roi, startDate, endDate).map(prepMSI)

        # Merge the collections.
        col = MSILCcoly.merge(MSI2Acoly)

        yearImg = col.median()
        nBands = yearImg.bandNames().size()
        yearImg = ee.Image(ee.Algorithms.If(nBands, yearImg, dummyImg))
        return calcNbr(yearImg).set(
            {
                "system:time_start": startDate.millis(),
                "nBands": nBands,
                "system:date": ee.Date(startDate).format(date_format),
            }
        )

    ################################################################################

    # Make a dummy image for missing years.
    bandNames = ee.List(
        [
            "Blue",
            "Green",
            "Red",
            "Red Edge 1",
            "Red Edge 2",
            "Red Edge 3",
            "NIR",
            "Red Edge 4",
            "SWIR1",
            "SWIR2",
            "QA60",
        ]
    )
    fillerValues = ee.List.repeat(0, bandNames.size())
    dummyImg = ee.Image.constant(fillerValues).rename(bandNames).selfMask().int16()

    # ################################################################################
    # # Get a list of years
    # years = ee.List.sequence(start_year, end_year)

    # ################################################################################
    # # Make list of annual image composites.
    # imgList = years.map(getAnnualComp)

    if frequency == "year":
        years = ee.List.sequence(start_year, end_year)
        imgList = years.map(getAnnualComp)
    elif frequency == "quarter":
        quarters = date_sequence(
            str(start_year) + "-01-01", str(end_year) + "-12-31", "quarter", date_format
        )
        imgList = quarters.map(getQuarterlyComp)
    elif frequency == "month":
        months = date_sequence(
            str(start_year) + "-01-01", str(end_year) + "-12-31", "month", date_format
        )
        imgList = months.map(getMonthlyComp)

    # Convert image composite list to collection
    imgCol = ee.ImageCollection.fromImages(imgList)

    imgCol = imgCol.map(lambda img: img.clip(roi))

    return imgCol

vector_to_gif(filename, out_gif, colname, vmin=None, vmax=None, step=1, facecolor='black', figsize=(10, 8), padding=3, title=None, add_text=True, xy=('1%', '1%'), fontsize=20, add_progress_bar=True, progress_bar_color='blue', progress_bar_height=5, dpi=300, fps=10, loop=0, mp4=False, keep_png=False, verbose=True, open_args={}, plot_args={})

Convert a vector to a gif. This function was inspired by by Johannes Uhl's shapefile2gif repo at https://github.com/johannesuhl/shapefile2gif. Credits to Johannes Uhl.

Parameters:

Name Type Description Default
filename str

The input vector file. Can be a directory path or http URL, e.g., "https://i.imgur.com/ZWSZC5z.gif"

required
out_gif str

The output gif file.

required
colname str

The column name of the vector that contains numerical values.

required
vmin float

The minimum value to filter the data. Defaults to None.

None
vmax float

The maximum value to filter the data. Defaults to None.

None
step float

The step to filter the data. Defaults to 1.

1
facecolor str

The color to visualize the data. Defaults to "black".

'black'
figsize tuple

The figure size. Defaults to (10, 8).

(10, 8)
padding int

The padding of the figure tight_layout. Defaults to 3.

3
title str

The title of the figure. Defaults to None.

None
add_text bool

Whether to add text to the figure. Defaults to True.

True
xy tuple

The position of the text from the lower-left corner. Defaults to ("1%", "1%").

('1%', '1%')
fontsize int

The font size of the text. Defaults to 20.

20
add_progress_bar bool

Whether to add a progress bar to the figure. Defaults to True.

True
progress_bar_color str

The color of the progress bar. Defaults to "blue".

'blue'
progress_bar_height int

The height of the progress bar. Defaults to 5.

5
dpi int

The dpi of the figure. Defaults to 300.

300
fps int

The frames per second (fps) of the gif. Defaults to 10.

10
loop int

The number of loops of the gif. Defaults to 0, infinite loop.

0
mp4 bool

Whether to convert the gif to mp4. Defaults to False.

False
keep_png bool

Whether to keep the png files. Defaults to False.

False
verbose bool

Whether to print the progress. Defaults to True.

True
open_args dict

The arguments for the geopandas.read_file() function. Defaults to {}.

{}
plot_args dict

The arguments for the geopandas.GeoDataFrame.plot() function. Defaults to {}.

{}
Source code in geemap/timelapse.py
def vector_to_gif(
    filename,
    out_gif,
    colname,
    vmin=None,
    vmax=None,
    step=1,
    facecolor="black",
    figsize=(10, 8),
    padding=3,
    title=None,
    add_text=True,
    xy=("1%", "1%"),
    fontsize=20,
    add_progress_bar=True,
    progress_bar_color="blue",
    progress_bar_height=5,
    dpi=300,
    fps=10,
    loop=0,
    mp4=False,
    keep_png=False,
    verbose=True,
    open_args={},
    plot_args={},
):
    """Convert a vector to a gif. This function was inspired by by Johannes Uhl's shapefile2gif repo at
            https://github.com/johannesuhl/shapefile2gif. Credits to Johannes Uhl.

    Args:
        filename (str): The input vector file. Can be a directory path or http URL, e.g., "https://i.imgur.com/ZWSZC5z.gif"
        out_gif (str): The output gif file.
        colname (str): The column name of the vector that contains numerical values.
        vmin (float, optional): The minimum value to filter the data. Defaults to None.
        vmax (float, optional): The maximum value to filter the data. Defaults to None.
        step (float, optional): The step to filter the data. Defaults to 1.
        facecolor (str, optional): The color to visualize the data. Defaults to "black".
        figsize (tuple, optional): The figure size. Defaults to (10, 8).
        padding (int, optional): The padding of the figure tight_layout. Defaults to 3.
        title (str, optional): The title of the figure. Defaults to None.
        add_text (bool, optional): Whether to add text to the figure. Defaults to True.
        xy (tuple, optional): The position of the text from the lower-left corner. Defaults to ("1%", "1%").
        fontsize (int, optional): The font size of the text. Defaults to 20.
        add_progress_bar (bool, optional): Whether to add a progress bar to the figure. Defaults to True.
        progress_bar_color (str, optional): The color of the progress bar. Defaults to "blue".
        progress_bar_height (int, optional): The height of the progress bar. Defaults to 5.
        dpi (int, optional): The dpi of the figure. Defaults to 300.
        fps (int, optional): The frames per second (fps) of the gif. Defaults to 10.
        loop (int, optional): The number of loops of the gif. Defaults to 0, infinite loop.
        mp4 (bool, optional): Whether to convert the gif to mp4. Defaults to False.
        keep_png (bool, optional): Whether to keep the png files. Defaults to False.
        verbose (bool, optional): Whether to print the progress. Defaults to True.
        open_args (dict, optional): The arguments for the geopandas.read_file() function. Defaults to {}.
        plot_args (dict, optional): The arguments for the geopandas.GeoDataFrame.plot() function. Defaults to {}.

    """
    import geopandas as gpd
    import matplotlib.pyplot as plt

    out_dir = os.path.dirname(out_gif)
    tmp_dir = os.path.join(out_dir, "tmp_png")
    if not os.path.exists(tmp_dir):
        os.makedirs(tmp_dir)

    if isinstance(filename, str):
        gdf = gpd.read_file(filename, **open_args)
    elif isinstance(filename, gpd.GeoDataFrame):
        gdf = filename
    else:
        raise ValueError(
            "filename must be a string or a geopandas.GeoDataFrame object."
        )

    bbox = gdf.total_bounds

    if colname not in gdf.columns:
        raise Exception(
            f"{colname} is not in the columns of the GeoDataFrame. It must be one of {gdf.columns}"
        )

    values = gdf[colname].unique().tolist()
    values.sort()

    if vmin is None:
        vmin = values[0]
    if vmax is None:
        vmax = values[-1]

    options = range(vmin, vmax + step, step)

    W = bbox[2] - bbox[0]
    H = bbox[3] - bbox[1]

    if xy is None:
        # default text location is 5% width and 5% height of the image.
        xy = (int(0.05 * W), int(0.05 * H))
    elif (xy is not None) and (not isinstance(xy, tuple)) and (len(xy) == 2):
        raise Exception("xy must be a tuple, e.g., (10, 10), ('10%', '10%')")

    elif all(isinstance(item, int) for item in xy) and (len(xy) == 2):
        x, y = xy
        if (x > 0) and (x < W) and (y > 0) and (y < H):
            pass
        else:
            print(
                f"xy is out of bounds. x must be within [0, {W}], and y must be within [0, {H}]"
            )
            return
    elif all(isinstance(item, str) for item in xy) and (len(xy) == 2):
        x, y = xy
        if ("%" in x) and ("%" in y):
            try:
                x = float(x.replace("%", "")) / 100.0 * W
                y = float(y.replace("%", "")) / 100.0 * H
            except Exception:
                raise Exception(
                    "The specified xy is invalid. It must be formatted like this ('10%', '10%')"
                )
    else:
        raise Exception(
            "The specified xy is invalid. It must be formatted like this: (10, 10) or ('10%', '10%')"
        )

    x = bbox[0] + x
    y = bbox[1] + y

    for index, v in enumerate(options):
        if verbose:
            print(f"Processing {index+1}/{len(options)}: {v}...")
        yrdf = gdf[gdf[colname] <= v]
        fig, ax = plt.subplots()
        ax = yrdf.plot(facecolor=facecolor, figsize=figsize, **plot_args)
        ax.set_title(title, fontsize=fontsize)
        ax.set_axis_off()
        ax.set_xlim([bbox[0], bbox[2]])
        ax.set_ylim([bbox[1], bbox[3]])
        if add_text:
            ax.text(x, y, v, fontsize=fontsize)
        fig = ax.get_figure()
        plt.tight_layout(pad=padding)
        fig.savefig(tmp_dir + os.sep + "%s.png" % v, dpi=dpi)
        plt.clf()
        plt.close("all")

    png_to_gif(tmp_dir, out_gif, fps=fps, loop=loop)

    if add_progress_bar:
        add_progress_bar_to_gif(
            out_gif,
            out_gif,
            progress_bar_color,
            progress_bar_height,
            duration=1000 / fps,
            loop=loop,
        )

    if mp4:
        gif_to_mp4(out_gif, out_gif.replace(".gif", ".mp4"))

    if not keep_png:
        shutil.rmtree(tmp_dir)

    if verbose:
        print(f"Done. The GIF is saved to {out_gif}.")